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Abstract

Indian Regional Navigation Satellite System (IRNSS), also named as NAVIC, is India’s

indigenously developed satellite navigation system, completed in April 2016 with a coverage

over the Indian subcontinent. Key to success of a navigation system is the capability to build

accurate, cheap and low-power receivers which can be easily integrated with multiple existing

platforms and devices. While IRNSS has many similarities with GPS, there are some crucial

differences. In this work, we design, implement and analyze the most essential signal processing

blocks in building an IRNSS receiver, namely acquisition, tracking and pseudo-range computa-

tion. The techniques are inspired by vast literature on GPS receiver design. Key engineering

parameters involved in the design are identified and their inter-dependencies are studied, as

a first step towards subsequent development of an ASIC receiver. An example software im-

plementation is provided. Towards the end, an analog front-end for S-band of IRNSS using

off-the-shelf is built and used to test the software receiver.
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Chapter 1

Satellite Navigation Systems &

IRNSS

1.1 Introduction

Satellite based navigation system is one of the defining technologies of our times. Positioning

and timing services of Global Navigation Satellite Systems (GNSS) are used in a wide range of

applications, from critical systems like safe airplane landings, power grid time synchronization

etc [9], to civilian uses like Google Maps and GNSS reflectometry for soil moisture measurements

[8]. It is worth noting that GNSS receivers can act as very accurate time keeping devices as well.

As of 2017, Global Positioning System (GPS) of the United States and GLONASS of Russia

are fully operational satellite navigation systems with global coverage (which means, one can

use these to find location anywhere on Earth). European Union’s Gallileo is in the process of

being made a global navigation system. Besides these, there is BeiDou of China, and IRNSS

(India Regional Navigation Satellite System, named NAVIC) from India, which are regional

navigation systems with coverage over and around the respective countries.

Global Positioning System (GPS) developed in the US was the first global satellite navigation

system to become operational (in 1995). It was preceded by ground-based navigation systems.

The birth of idea that lead to GPS dates back to 1957 when Sputnik 1, the first man-made

satellite was launched by the Soviet Union. The observation that Doppler shift in the signal

received from Sputnik can be used to locate the satellite along its orbit, triggered interest in

the reverse problem of using satellites with precisely defined orbits to locate places on Earth or

space. This led to development of the first satellite navigation system TRANSIT in 1960. It

consisted of a five satellite constellation giving a position fix once every 110 minutes near the

equator and had a typical accuracy of 200 meters. This was followed by the Timation satellites,

which tested very accurate clocks in orbit and effects of relativity, which are an important part

of any GNSS. The current GPS system became fully operational in April 1995. Since then

many advancements have been made and several new types of signal transmissions were added

to develop new functionalities and to improve the accuracy of old ones. GLONASS of Russia

was developed in parallel with GPS.
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All satellite navigation systems are made up of three segments namely:

• The Space Segment: It consists of the satellite constellation. The number of satellites

in the constellation decides the coverage. In order to enable global coverage atleast 4

satellites should be visible from any point on Earth, for reasons described later. GPS

and GLONASS have 32 satellite and 28 satellite constellations respectively. The satellites

have synchronized clocks aboard them to have a common reference time and their orbits

should be precisely known. Satellites transmit information about their orbit, time and

health at all times. An unlimited number of users can receive and process these signals.

• The Control Segment: There are multiple ground-stations that constantly monitor the

satellites and take actions to ensure proper functioning of the system. The control segment

is responsible for updating satellite orbital parameters, onboard time keeping etc at regular

intervals. The locations of ground-stations and other details for GPS can be found in [26].

• The User Segment: Users are passive receivers i.e no signal needs to be transmitted to

the satellites/ground-stations to use the navigation systems. Any receiver capable of cap-

turing the transmitted signal and processing, can compute its location coordinates. The

main factor which ensured the widespread use of satellite navigation was the availability

of portable and affordable, low power receivers, which can be integrated with existing de-

vices like mobile phones. The designs typically do away with heavy computations at the

receiver. Usually two kinds of services are offered, the Standard Positioning Service(SPS)

for civilian use, and Precise Positioning Service(PPS), with better accuracy and encryption

for military uses. The two services use orthogonal signals transmitted by the satellites.

SPS receiver design is the main focus of this text.

The following section briefly describes the working principles underlying all GNSS’s. It is

followed by an introduction to IRNSS, highlighting its similarity to GPS.

1.2 Working Principle

To assign unique coordinates to locations in a given space we need reference points whose

locations are precisely defined, and a method to uniquely identify all other points w.r.t these

references. Distances can be measured from the given point to the references, and then unique

coordinates can be assigned. In satellite navigation systems, loosely speaking, the satellites are

treated as the references in space.

1.2.1 Trilateration

In 2D, if two reference points are fixed and distances of a point from these references are given,

the point can be identified as one of the two on either side of the line joining the references.

This can be done by drawing circles with references as centers and the given distances as radii.

The circles will intersect at two points unique to the given distance pair. Extrapolating the

2



same idea to 3D, we will have spheres instead of circles. 3 spheres intersect at two points.

1.1 illustrates this concept, known as ‘trilateration’. By measuring distances at any instant,

between the location of interest and three reference satellites, we can assign coordinates to the

location (after eliminating the other point in space, also resulting from intersection of the three

spheres). So, the primary goal is to accurately and simultaneously measure distances between

satellites and the receiver on Earth. The receiver accomplishes this by estimating the time that

received signal took to to travel from the satellite to the receiver. Measured time is multiplied

by the speed of radio waves to get the distance.

Suppose we make the time measurements. Let ti be the transit time from satellite i to

the receiver. Then the distances ρi for i = 1, 2, 3 are given by ρi = cti. These are known

as the ‘pseudorange’ measurements. Let (xi, yi, zi) be the known coordinates of the satellite i

at the time of transmission and (xr, yr, zr) be the receiver coordinates at the time of reception,

which need to be computed. We have three unknown coordinates and three equation, ρi =√
(xi − xr)2 + (yi − yr)2 + (zi − zr)2 for i = 1, 2, 3. In principle, these equations can be simul-

taneously solved for (xr, yr, zr). However there are considerable challenges in making these

measurements. A small error of 1µs in measurement of ti will cause the range to be off by

300m. This and other considerations are described in the next subsection. Conventions used

in the GPS system are used as examples here, which may differ in technical details from other

navigation systems.

1.2.2 Reference in Space

Firstly, it is important to have a universal coordinate system that can be used to assign coordi-

nates to locations on earth, using the orbiting satellites as references. GPS uses Earth-Centered

Inertial Coordinate System (ECI) to specify satellite orbits. ECI system considers center-of-

mass of the Earth as the origin and axes fixed with respect to the stars. However receiver

positions have to be specified in Earth-centered Earth-Fixed system (ECEF) which can then

be converted to the familiar coordinates of latitude, longitude and altitude. The receiver also

needs to account for the rotation of Earth while the signal is traveling from the satellite to re-

ceiver. The details of establishing the two coordinate systems and conversions between them is

non-trivial and not dealt with in this report. Secondly, knowing the orbits of satellites precisely

is crucial to navigation system accuracy, since satellites are the references. Satellites transmit

their locations, to be used by the receiver in fixing its own position. Hence the satellites need to

have information about their location at all times. Owing to multiple non-idealities, the orbital

parameters change and have to be corrected for regularly. This is done by the Control Segment

ground-stations. These corrections still leave a possibility for small errors know as ‘ephemeris

errors’. In a typical receiver ephemeris errors are usually large in radial direction i.e in altitude

measurement as compared to ground coordinates. (This is because satellite references will be

present only on one side of the receiver along radial direction, since other side is the earth.)

3



Figure 1.1: Intersection of spheres centered at 3 satellites identifies 2 points (One is shown on
surface of the Earth, other would be higher above in space)

1.2.3 Time Reference

As mentioned before, computing time of arrival of the signal is key to computing position.

This would have been easy if all the satellites and the receivers had a common and accurate

time reference. In this case all satellites need to transmit their signature signals at a common

agreed times and the receiver can measure delay of each signal on reception and estimate the

ranges ρi’s. Three such ranges suffice to solve for receiver coordinates. To enable this, satellites

carry synchronized ‘atomic clocks’. This is referred to as GPS system time. However they are

subject to relativistic effects, hence 10.23MHz reference clocks (w.r.t Earth) on GPS satellites

are actually set at 10.2299999954326MHz [10] (about 38 seconds faster). These corrections are

not fixed either; they need to be monitored by the ground-station and corrected to some extent.

But receivers cannot afford to have a synchronized accurate clock. They should work with

less accurate clocks, which have time offsets as well as frequency drifts affected by environmental

conditions, normally these are unknown quantities. Thus clock offset, ∆t, of the receiver,

w.r.t GPS time at the time of measurement becomes the fourth unknown in the system. The

range equations get modified to ρi =
√

(xi − xr)2 + (yi − yr)2 + (zi − zr)2 + c(∆t). Solving

this necessitates 4 independent equations, and hence visibility of 4 satellites, rather than 3,

to get a position fix. Value of ∆t can be known as a byproduct of solving for (xr, yr, zr)

and the receiver time can be offset by ∆t to get near atomic-clock like accuracy. In practice,

the differences between pseudorange of satellites ρi − ρj is measured by the receiver. One of
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the satellites is taken to be at some arbitrary distance (say 20,000km) and other distances

are taken relative to it by adding the differences. Once the equations are solved, the true

distances can be obtained. The satellite signal has to travel through layers of atmosphere to

reach the receiver. Atmospheric effects add additional time delay to this path causing errors in

range measurements. Ionospheric and Tropospheric delays are the main cause of errors due to

their unpredictable nature. Models have been developed to predict and compensate for these

errors. The first-hand distance estimates from time of travel is actual distance plus errors due to

atmosphere and receiver clock offset. Thus it is referred to as pseudorange in GNSS literature.

Most of these models, corrections and solvers are well-documented and one can directly use

toolboxes like [19] to work out the coordinates once data bits from satellites decoded and the

pseudoranges have been calculated.

1.2.4 pseudorange Measurement

Here we discuss what entails pseudorange calculation as elaborated in [1]. Let us take the GPS

Time (GPST) maintained at the control segment ground station as the reference. Consider the

signal received at the antenna at time t GPST. Let the travel time from the satellite be τ . Thus

the signal left the satellite at time (t − τ) GPST. The clocks at the receiver and the ones on

satellite may have some offset compared to the GPST. Let tu(t) and ts(t) be the time measured

by the receiver and the satellite respectively when the actual time according to GPST is t. Thus

time of transmission as recorded by the satellite is ts(t − τ), and let us assume that there is a

way by which the receiver can recover this information. Then the distance measured at t would

be:

ρ(t) = c[tu(t)− ts(t− τ)] + ε(t)

Here ε(t) represents error due to other effects like the ionospheric delays.

Let tu(t) = t+ δtu(t) and ts(t) = t+ δts(t)

∴ ρ = c[t+ δtu(t)− (t− τ)− δts(t− τ)] + ε(t)

∴ ρ = cτ + c[δtu(t)− δts(t− τ)] + ε(t)

Let r = cτ i.e the actual range

∴ ρ = r + c[δtu(t)− δts(t− τ)] + ε(t) (1.1)

ρ is called the pseudorange (pseudo- because it is the actual range plus the errors). This is

measured using the raw signals, and models are used to estimate for the errors and obtain

estimate of r from ρ.

1.3 Indian Regional Navigation Satellite System (IRNSS)

Indian Regional Navigation Satellite System (IRNSS), named as NAVIC is a satellite navigation

system developed and controlled by the Indian Space Research Organization (ISRO). The last
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GPS and IRNSS: Signal Structure

Navigation
System

GPS IRNSS

Transmission
Frequency

L1: 1575.42MHz (Civil, Restricted)
L2: 1227.60MHz (Restricted)

L5: 1176.45MHz (SPS & RS)
S : 2492.028MHz (SPS & RS)

Min. Received
Power (Civilian)

-158.5dBW (L1) -159.0dBW (L5)
-162.3dBW (S)

Modulation, Cod-
ing, Polarization

BPSK, DSSS-CDMA,
RHCP

BPSK, DSSS-CDMA,
RHCP

Navigation
Data rate

50bps 50bps

Error Correction (32,26) Hamming Code with 6 par-
ity bits per 30-bit word

1
2 rate convolution code, interleav-
ing & parity coding with CRC-24Q

PRN code
(Civilian Use)

1023-length Gold Codes, 1ms long 1023-length Gold Codes, 1ms long

Data Frame
Structure

1 Frame = 5 subframes, each sub-
frame 300bits long

1 Frame = 4 subframes, each sub-
frame 600bits long

Subframe
differences

Time of Week: 19bits
(6 second counts)
8 bit sync code

Time of Week: 17bits
(12 second counts)
16 bit sync code

Table 1.1: Comparision between GPS and IRNSS signals

satellite of the constellation was launched on 28th April, 2016. It consists of a seven satellites,

with expected coverage from latitude 30◦ South to 50◦ North, longitude 30◦ East to 130◦ East

[11]. Like GPS, IRNSS offers Standard Positioning Service (SPS) for civilian use and Precise

Positioning Service or Restricted Service (RS) to authorized users. The system is expected to

offer an accuracy of 10 meters in the India [12]. IRNSS has many features in common with GPS,

except that IRNSS is a regional navigation system and all of the 7 satellites in the constellation

are visible at all times over the Indian sub-continent. This would simplify some aspects of

receiver design for IRNSS.

1.3.1 Similarities with GPS

Table 1.1 lists some key comparisons between GPS and IRNSS signal structures:

More details can be found in Interface specification documents of GPS [10] and IRNSS [11].

As is clear from table 1.1, GPS and IRNSS differ only in higher layer frame structure and in

frequency band of transmission. Thus, front end signal processing to decode data from raw

signals would be same for GPS and IRNSS. Hence the discussions in subsequent chapters use

GPS as the standard, but will apply equally well for IRNSS, unless otherwise specified.

bc
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Chapter 2

Signal Structure & Processing

Global Positioning System (GPS) was the first satellite based navigation system to become

operational globally and still remains the dominant one. This chapter looks at the salient

features of GPS signals and methods involved in decoding all necessary information from them

to compute pseudoranges. The algorithms almost exactly extend to IRNSS.

The GPS signals are transmitted at 1.57542 GHz (L1 band) and 1.2276 GHz (L2 band). The

L1 signal comprises of data transmissions for civilian use of GPS known as the coarse/acquisition

(C/A) code as well as the more accurate precision P(Y) code transmissions for authorized use.

L2 signal is used only for P(Y) code transmission in older GPS satellites, but a new civilian signal

called L2C was introduced in the L2 band with newer satellites. IRNSS employs two frequencies

1176.45 MHz (L5 band) and 2492.028MHz (S band), for both C/A as well as Precision codes.

Use of two separate bands is expected to provide a better estimate of ‘ionospheric group delay’,

and thus a more accurate positioning than L1-based GPS. We shall restrict to the L1 C/A

signal of GPS in this chapter to illustrate the basic principles. Measurement of time of travel

of the signal from the satellite to the receiver is the crucial step in reception.

At the receiver, L1 GPS signals have nominal power of -128.5 dBm, in 20.46 MHz band

around the center frequency. Comparing this to typical signal strength of cellphone signals

of about -80 dBm gives an idea of how low the SNR of GPS signal are. Section 1 describes

the signal structure used in GPS/IRNSS transmission. The following section briefly describes

the signal at reception, more details of which are described in Chapter 4. Section 3 lists the

information to be extracted from these signals and introduces the basic algorithms to do so.

Section 4 presents some analysis on the same.

2.1 Signal Structure

GPS/IRNSS employ Direct Sequence Spread Spectrum (DSSS) technique in signal transmission.

In DSSS, the data bits intended for transmission are multiplied by a known pseudo-random bit

sequence of much higher frequency than data bits, and the resulting signal is modulated and

transmitted. This process deliberately ‘spreads’ the spectrum of input signal to several times

the original bandwidth as shown in Figure 2.1. At reception, the signal is de-spread by match-
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Figure 2.1: Effect of Spreading

Figure 2.2: GPS/IRNSS Signal Structure (Source:Wikipedia)

filtering the received signal with the same pseudo-random sequence. To enable decoding, the

spreading sequence must have the property of very low correlation with shifted versions of

itself. DSSS is a form of Code Division Multiple Access (CDMA) technique, allowing multiple

satellites to transmit data in exactly the same frequency band but with different, mutually

nearly-orthogonal (i.e low cross-correlation) spreading sequences. Restrictions on power flux

spectral density to prevent interference to microwave line-of-sight communication and radio

astronomy measurements, makes DSSS a preferred way of signal transmission for GPS since

it allows high power satellite transmission, but still remain within the spectral density limit

due to large bandwidth [2]. Besides, DSSS provides robustness to GPS/IRNSS signals against

narrow-band interference, multi-path effects and jamming attempts [13]. But more importantly,

the pseudo-random sequence is what allows very accurate estimation of time of travel of the

signal and hence is a key concept behind GPS/IRNSS.

The signal consists of three main components which are multiplied together to get the

transmitted signal. Refer to 2.2 for a pictorial representation of the signal.

• Navigation data bits, D(t) carry information on ephemeris (satellite position, velocity),

time, satellite health data etc. at a very low rate of 50 bits per second.
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Figure 2.3: Alignment of PRN codes with the navigation data bits

• Ranging/Spread Spectrum codes, x(t) are 1023 bits long pseudo-random (PRN)

sequences lasting 1 millisecond, uniquely assigned one each for all of the satellite in the

constellation. PRN codes used in GPS/IRNSS belong to a family called Gold Codes. For

a given satellite, same code sequence is appended one after the other every 1ms.

• Carrier wave is RF wave onto which the bit information mentioned above are modulated

and transmitted. Frequency of GPS civilian signal is fL1 = 1575.42MHz (wavelength ≈ 19

cm). The signal is Right-Hand Circular Polarized (RHCP).

Each navigation data bit of 20ms is multiplied by 20 replicas of the PRN code lasting 1ms

each. The PRN codes are aligned with data bit boundaries. Figure 2.3 illustrates the alignment.

Since the chips are Tc = 1
1023 ms long, the resulting baseband signal has a first null frequency

of 1.023MHz as shown in Figure 2.1. This string of chips is then BPSK modulated onto the

carrier and transmitted. In GPS/IRNSS signals spectrum efficiency is not a worry. Hence the

chips are sent as rectangular pulses modulated on the carrier without any pulse shaping.

Thus the signal transmitted at fL1 from the satellite is of the form:

sfL1
(t) =

√
2P1D1(t)x(t)cos(2πfL1t) +

√
2P2D2(t)y(t)sin(2πfL1t) (2.1)

where P1, P2 = transmitted signal powers ,

D1, D2 = Data bits

x(t), y(t) = Ranging codes for C/A and P(Y) signals respectively

Note that the C/A and P(Y) signals at fL1 are in phase quadrature. Since we are only con-

cerned with the C/A signal, we will drop the P(Y) signal in further analysis. Also, since we

deal with only fL1 center frequency, we will drop the subscripts.
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2.1.1 PRN Codes

pseudo-Random Noise (PRN) code is a bit sequence which is generated using a deterministic

rule, but has spectral properties of a statistically random sequence (i.e a noise sequence where

every bit is independent of all other bits). In particular, a PRN code has a delta-like peak

in auto-correlation and very-low cross-correlation with any other PRN code. For L length

sequences {Xn}L−1
n=0 and {Yn}, the ‘circular’ autocorrelation function RXX [m] and circular cross-

correlation function RXY [m] are:

RXX [m] =

n=L−1∑
n=0

XnX((n+m) mod L) ∀m ∈ Z

RXY [m] =

n=L−1∑
n=0

XnY((n+m) mod L) ∀m ∈ Z

For {Xn} and {Yn} to be a good PRN codes, we need, as shown in Figure 2.4,

RXX [0 ]� RXX [m] ∀m 6= 0

RYY [0 ]� RYY [m] ∀m 6= 0

RXY [0 ]� L ∀m

Depending on the deterministic rule used to generate the PRN codes, there are different fam-

ily of codes. PRN codes are usually generated using specific feedback tap combinations in a

Linear Feedback Shift Registers(LFSR). Gold Codes is a set of PRN codes widely used as

the spreading sequences in CDMA communication. 1023 length Gold Codes are used in SPS

(Standard Positioning Service) of GPS/IRNSS. Each satellite is allotted a fixed Gold-Code and

the allotment is known at the receiver. PRN codes serve two main functions w.r.t GPS/IRNSS

as listed below:

• Sense presence of signal and satellite identification: If the signal received at the antenna

correlates strongly with any shift of PRN code of a satellite, it implies the presence of

signal from that particular satellite, with very high probability.

• Distance measurement: While a very coarse estimate of time of travel is obtained from

the Navigation data, code phase measurements of the PRN codes, described later, provide

the fine estimate used to get an accurate position fix.

Gold Code Generation

GPS/IRNSS Gold codes are generated, as XOR of two PRN sequences, using two 10-bit LFSR’s,

G1 and G2. Refer to Figure 2.5a. At every clock event, the result of XOR-ing the bits at the

feedback tap positions (3, 10 for G1 and 2, 3, 6, 8, 9, 10 for G2) is fed back into the shift register.

And 10th bit of the two registers are XOR-ed to obtain the PRN sequence. This generates a

PRN sequence with period of upto 210 − 1. Same setup is used for all satellites in GPS as well
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Figure 2.4: Correlation properties of PRN codes for L = 1000

as IRNSS. What changes from satellite to satellite is the initialization of register G2. In each

case, G1 is initialized to all 1’s. G2 initializations for IRNSS satellites are shown in Table 2.5b.

The table also gives first 10 chips in Octal2. Example, for satellite 1 of S-band, the first 10 chips

are 1︸︷︷︸
1

100︸︷︷︸
4

010︸︷︷︸
2

000︸︷︷︸
0

. For GPS, G2 is initialized to all 1’s and output is taken as the XOR of

last bit of G1 and selected two positions of G2. Which two positions depend on the satellite

number (pseudocode to generate the codes is given in Chapter 4). Refer to Section 4.3.1.1 of

[3] for details. If {Xsv
n }1023

n=0 is the Gold Code corresponding to satellite sv, then the spreading

sequence x(t) is:

x(t) =
1023∑
n=0

Xsv
n rect

(
t− nTc
Tc

)

where rect(t) is rectangular pulse with support t ∈ [0, 1) ms and Tc is the chip duration, 1
1.023 µs

in case of GPS/IRNSS. The signal x(t) lasts for 1023×Tc = 1ms and then repeats periodically.

2.1.2 Navigation Bits Framing & Time information

Navigation bits are transmitted at the rate of 50 bits per second, after error correction encoding.

Navigation bits carry information about Ephemeris Data, satellite almanacs, time of transmis-

sion information, clock corrections, satellite health information and ionospheric models. Bits

are arranged into frames and MSB is transmitted first. In GPS, a single subframe is of 1500 bits

consisting of 5 sub-frames of 300 bits each, lasting 6 seconds (20ms×300 ), while IRNSS consists

of 2400 bits long frames with 4 sub-frames of 600 bits each, lasting 12 seconds. Navigation data

framing and error correction coding are the only differences between signal structure of GPS

and IRNSS (Refer to Section 5 of [11] and Section 20.3 of [10] for details). We now look at

parts of the navigation data that allow for frame synchronization and time computation.
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(a) Gold Code Generation LFSR setup (b) G2 register initializations for IRNSS

Figure 2.5: Gold Code Generation [11]

(a) IRNSS Subframes 1 & 2 (b) IRNSS Subframes 3 & 4

Figure 2.6: IRNSS subframe structure [11]

In GPS, each 300 bit subframe is divided into 10, 30-bit packets called ‘words’. Each word ends

with 6 parity bits and is encoded using Hamming(32,26), where 32-bit block is formed with

the current word and last two bits of the previous word. Refer to Figure 2.7. First word of

every subframe is called the telemetry word (TLM), which contains an 8-bit preamble in the

beginning. The preamble, 10001101, which is the same for all satellites indicates the beginning

of a subframe. However, preamble-like combination may occur anywhere in the data, hence

further parity checks are required to ascertain the presence of preamble in the decoded naviga-

tion bit stream (Figure 20-5 of [10]). TLM is followed by the Hand-Over Word (HOW). First

17 bits of the HOW are called Time of Week (TOW) bits and provide timing information as

described below. IRNSS has a 600-bit subframe, which begins with the 16-bit synchronization

sequence 1110 1011 1001 0000. The remaining 584 bits are encoded using 1
2 rate convolution

code and block interleaved with dimensions 8 rows × 73 columns. After decoding, we will have

292 information bits which have a structure as shown in Figure 2.6.

Time Measurement

In case of GPS, satellite time is counted in units of 1.5 seconds. Currently, Zero time is taken to

be the midnight between 21st August and 22nd August, 1999. Time is kept since the zero time

point as a 29-bit number called the Z-count. The first 10 bits of Z-count store the number of

weeks (mod 210) that have passed since the zero-point time, called as the Week Number (WN).

First 10 bits of the Word 3 of Subframe 1 gives the WN. The last 19 bits of Z-count store
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Figure 2.7: GPS subframe structure

the number of 1.5sec units that have passed since the beginning of the current week, referred

to as TOW (Time-Of-Week). Note that 1 week is 3600∗24∗7
1.5 = 403200 1.5sec units; and hence

it can be stored as 19 bit number (219 = 524288). Now, the satellite transmits the TOW of

the beginning of the next subframe, as the most significant 17 bits of the HOW of the current

subframe as shown in Figure 2.7.To specify the HOW of just the subframe beginnings, only 17

bits suffice because the subframes occur at an interval of 6 seconds, which is 22 × 1.5 seconds,

allowing us to omit specifically mentioning them in the subframe word. They can be recovered

at the receiver by simply counting the number of navigation bits since the previous HOW. Thus

the receiver can fully recover the Z-count maintained by the satellite at the time of

transmission of the first bit of the current subframe being processed.IRNSS maintains

a 27-bit Z-count consisting of 10 bit WN and 17 bit TOW, as 12-second counts. The Z-count

computation for IRNSS is same as that of GPS, except that IRNSS maintains 12 seconds count

due to 600-bit subframe lengths as against 300 bit subframe lengths of GPS.

It should be noted that all the satellite clocks are synchronized, and hence the bit edges of

all the satellites occur at the same time. In principle, a receiver can simply look for the edge

of first bit of the preamble from atleast 4 satellites satellite, measure time differences between

reception of each of them and hence get the 3 equations of pseudorange differences, ρi − ρj .
This can be solved to get the user location, after substituting the satellite locations as derived

from orbital parameters conveyed by the navigation bits. However, the catch is that these time

differences are in the order of 10’s of milliseconds and must be measured with a resolution of

micro-seconds, to get reasonably good position accuracy. The PRN codes enable these finer

measurements, as described in the last section.
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(a) Histogram of Inphase component
of actual raw GPS samples

(b) Auto-Corelation of
raw signal samples

Figure 2.8: Raw signal properties

2.2 Signal Reception

Signal, as described in previous section is transmitted by the satellite orbiting earth at very

high speeds ( 14,000 km/hour) from distance of 20,000 km to 25,000 km above the surface of

Earth. This has two significant effects on the signal:

• Doppler Shift: Relative motion between the orbiting satellite and the receiver causes

a Doppler shift (fd) and the signal at reception will be off from center frequency of fL1

by fd. The speed of the satellite and of the receiver itself, due to rotation of Earth or

otherwise, contribute to the Doppler Shift. For GPS fd varies in the range of ±6kHz

[2]. fd changes over time depending on where the satellite is in its orbit. Absolute fd

is maximum for satellites at low elevation angles and nearly zero when the satellites are

over-head. Unlike GPS, IRNSS has satellites in the geosynchronous and geostationary

orbits. Thus range of fd would be smaller for IRNSS. The S-band signal will have higher

Doppler shifts than the L5 signals, owing to higher center frequency. Doppler shift also

affects the PRN codes. PRN codes at a frequency of 1.023MHz will suffer a worst case

shift of 6000∗1.023
1575.42 = 6000

1540 ≈ 4Hz i.e shift of one C/A chip every 0.25 seconds. Doppler shift

is unknown apriori at the the receiver and finding it is the first step of processing.

• Noise: Signal suffers significant path loss and additive noise due to the atmosphere and

receiver electronics. As mentioned in 1.1, the typical reception SNR values of GPS signals

in 20.46MHz bandwidth is -160dBW. The signal is buried about -24.5dB [14] under the

thermal noise floor, and won’t be visible on the frequency spectrum of raw reception. In

the analysis, noise n(t) is assumed to be a zero-mean additive white Gaussian process.

This is a reasonable assumption as illustrated in Figure 2.8. The one-sided noise power

density is N0.

So, let fd be the unknown Doppler shift at fL1. The received signal sr(t) and transmitted
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signal st(t), are given as (Equation 2.1):

st(t) =
√

2PtD(t)x(t)cos(2πfL1t)

sr(t) =
√

2PrD(t− τ)x(t− τ)cos(2πf̂t+ θ) + n(t) (2.2)

where τ = net time of travel of the signal or the ‘code-phase’ at reception ,

f̂ = fL1 + fd,

θ = unknown carrier phase at reception

n(t) = additive noise

Strictly speaking, the PRN signal x(t) should also have some Doppler correction, however as

calculated above, the correction is small. Hence we neglect it in here. However estimating

it is necessary, and it will be dealt with in a later section on tracking. sr(t) is the signal at

antenna of the receiver from one satellite. The signal must be appropriately filtered, amplified

and down-converted before being sampled and processed. The design details of front-end is

dealt with in the next chapter. For the sake of analysis, let’s assume that the signal is down

converted to frequency fIF , which is sufficiently larger than signal main lobe bandwidth of

2.046MHz. Let s(t) and ñ(t) be the resulting signal and noise process respectively. Thus, after

down-conversion, we obtain

s(t) =
√
PrD(t− τ)x(t− τ) cos(2π(fIF + fd)t+ θ) + n(t) (2.3)

s(t) is then sampled and quantized. Quantization of raw input signal in GPS receivers is

typically only one- or two-bit and this suffices as long as there is no strong interference signal.

2.3 Signal Processing

The goals of signal processing on s(t) are as follows:

• Identify the satellites whose signals are being received

• Estimate, code-phase shift τ , Doppler shift fd and Carrier Phase θ (optional) for each of

the satellites

• Recover Navigation Data bits D(t)

• Perform error check and correction

• Compute pseudoranges to each visible satellite

If at least 4 pseudoranges are simultaneously available at the receiver, coordinates can be

computed. This section describes the processing involved in achieving the tasks listed above.

To illustrate the concepts, we treat the signals in continuous time domain although in practice

the signals are sampled before performing further operations described. Practical details are

dealt with in Chapters 3 and 4.
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2.3.1 Calculating the pseudorange

Suppose there are K transmitting satellites visible at the receiver, then the signal received post

front-end processing is,

sr(t) =
K∑
i=1

√
PiDi(t− τi)xi(t− τi) cos(2π(fIF + fd,i)t+ θi) + n(t)

The receiver must detect the signals from these K satellites, remove the residual carrier, separate

out theK signals from sr(t), say {si(t) = Di(t−τi)xi(t−τi)}i=Ki=1 , and compute the corresponding

K pseudoranges, say {ρi}i=Ki=1 . Assume that the si(t)’s have been obtained. Let us now see how

pseudoranges are computed. Consider s1(t) for instance, from some satellite X. The receiver

detects the beginning of the first preamble in s1(t), call it time point A. Let TA be the GPS

reference time at which satellite X transmitted the point A. Consider another point B after A,

as shown in Figure 2.9. Let it be transmitted at time TB. The relative time difference TB − TA
can be precisely measured using the structure of the GPS signal as shown. In general if A and B

are separated by N Navigation bits, R PRN replicas after the last NAV bit, C code chips after

the last PRN replica and fraction q of the current chip, then the relative time of transmission

is given by,

(TB − TA) = N × 20ms + R× 1ms + C × 1

1023
ms + q × 1

1023
ms

Also note that the Z-count gives the precise absolute GPS time of beginning of every preamble.

Thus TA can be found out and hence absolute time of transmission of any point within the

signal can be computed. The signal therefore, not only carries the information bits, but also

acts like a clock carrying information about when it was transmitted, with atomic-clock like

accuracy (except for some clock offset, relativistic and other errors). The receiver on decoding

a signal at any time point B knows the GPS time of its transmission. For N Navigation bits

since the beginning of preamble, R PRN replicas since the last NAV bit, C code chips since the

last PRN replica and fraction q of the current chip it is given by,

TB(in miliseconds) = Z-count× 1500 +N × 20 +R× 1 +
C

1023
+

q

1023

This gives the time of transmission. However, to measure the time of travel, receiver needs

to know the precise GPS time of reception as well. This is not possible unless the receiver has

a clock synchronized with the satellites. Thus receiver clock offset ∆T wrt GPS time becomes

the fourth unknown in the system, along with the three receiver coordinates Accounting for

this, the receiver needs K ≥ 4 pseudorange values to solve for the receiver position. There are

two ways of computing the pseudoranges, which give similar result[15].
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Figure 2.9: Measuring time relative to preamble beginning

Common Transmission Time

Let K = 4. Refer to Figure 2.10. 4 satellites transmit the Preamble, say at time T0. Signal

from satellite X reaches the receiver after a delay of T1, at GPS time T0 + T1. Similarly, signals

from satellites Y, Z and U reach the receiver at GPS time (T0 + T2), (T0 + T3) and (T0 + T4)

respectively. Let the receiver have a unknown clock offset of ∆T compared to GPS time.

Receiver can compute T0 precisely on receiving preamble from satellite X, as described above.

It looks at time of reception of preambles for each of the signal using its own clock and concludes

them to be T̂i = T0 + Ti + ∆T for i = 1, 2, 3, 4. It computes pseudoranges as ρi = c(T̂i − T0),

while actual ranges are ri = c(T̂i − T0 − ∆T ) and obtains satellite locations (xi, yi, zi) for

i = 1, 2, 3, 4 from Navigation bits. Using the measured T̂i’s and T0 it then solves the following

set of equations (after some atmospheric error corrections etc), for the four unknowns namely

receiver co-ordinates (xr, yr, zr) and clock offset ∆T

ri = c(T̂i − T0 −∆T ) =
√

(xi − xr)2 + (yi − yr)2 + (zi − zr)2 for i = 1, 2, 3, 4

In principle, this is how a pseudorange computation using common transmission time signal

works. Here we observe the starting edge of the preamble, which we know were transmitted

simultaneously by all the satellites.

In implementing this procedure however we note that computing T0 is unnecessary to get receiver
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position. By eliminating T0 and ∆T above equations can be re-written as:

c(T̂1 − T̂2) =
√

(x1 − xr)2 + (y1 − yr)2 + (z1 − zr)2 −
√

(x2 − xr)2 + (y2 − yr)2 + (z2 − zr)2

c(T̂1 − T̂3) =
√

(x1 − xr)2 + (y1 − yr)2 + (z1 − zr)2 −
√

(x3 − xr)2 + (y3 − yr)2 + (z3 − zr)2

c(T̂1 − T̂4) =
√

(x1 − xr)2 + (y1 − yr)2 + (z1 − zr)2 −
√

(x4 − xr)2 + (y4 − yr)2 + (z4 − zr)2

(2.4)

We need (TA−TB), (TA−TC) and (TA−TD) in Figure 2.10, to construct the equations above.

These can be computed as discussed previously, using the signal from satellite X as reference

and measuring delay in occurrences of preambles from other satellites w.r.t edge of preamble

from satellite X.

Common Reception Time

Common reception time method considers the signal across all satellites at a give time instance,

say at point D (tD). So we have the signal points {s1(tD), s2(tD), s3(tD), s4(tD)} which are

transmitted at different instances by different satellites but received at the same time by the

receiver. Now the receiver computes the times at which each of these were transmitted from the

respective satellite. Since the preambles were all transmitted at the same time T0, measuring

the time from point D to the respective preambles (S1, S2, S3 in Figure 2.10) gives the trans-

mission times. These differences are used in RHS in the pseudorange equations 2.4 and solved.

Ideally, the two methods are equivalent and Si = T4 − Ti. The common transmission time

method however assumes that the ∆T is same across the various time instances at which the

preambles from different satellites are received, which if not true will introduce errors in the

relative pseudoranges. ∆T will change if there is a offset in receiver clock frequency. As long

as this drift is small, the clock offset will not change much in the interval of measurement. The

common reception time, on the other hand uses signals transmitted by the satellites at slightly

different times. And given that satellites are constantly moving, the pseudoranges measured

are not simultaneous. However for small durations the change in range should not be much.

Discounting these two subtleties, the two methods are same. The implementation detailed in

this report uses the common transmission method. It should be noted that since satellites are at

a range varying from 20000 km to 25000 km, the travel times are typically 20000×103

3×108
≈ 65ms to

80ms. And the time difference between preambles of two satellites are typically less than 15ms

(less than a navigation bit length). Also, when more than 4 satellites are visible, it results in

an over-determined system of equations. These can be solved for the minimum square solution

and result in improved accuracy compared to having just 4 satellites.

Now consider the processing involved in obtaining {si(t) = Di(t− τi)xi(t− τi)}Ki=1 from the

front-end output s(t) =
K∑
i=1

√
PiDi(t− τi)xi(t− τi) cos(2π(fIF + fd,i)t+ θi) + n(t)
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Figure 2.10: Measuring relative delays using preamble beginnings
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Figure 2.11: Acquisition with Tint = 1ms (Note that fIF has been taken to be 0)

2.3.2 Acquisition

The process of finding the satellites signals present and getting a coarse estimate of the Doppler

frequency shift and the ‘code-phase’ for each of them is referred to as ‘Acquisition’. When cold

started, the receiver starts recording the incoming signal from an unknown point of the PRN

sequence and it differs from satellite to satellite since the different signals arrive out of sync

depending on the distance of satellites from the receiver. To be able to de-spread the signal

from the jth satellite, the receiver must align with the PRN sequence xj(t) of that satellite

and then decode the data bits. This requires knowledge of τj modulo 1ms as described below.

But this operation requires the baseband signal i.e Dj(t − τj)xj(t − τj). So the carrier must

be stripped off the signal, but it is necessary to know the Doppler shift fd,j to do so.. Thus if

the signal from a particular satellite is present, the first step is to get a coarse estimate of the

fd and (τ mod 1), without knowing θ. Knowing fd will eliminate the carrier completely and

give the baseband signal. Knowing (τ mod 1) then will align the receiver code generator with

incoming signal by introducing a code-offset of (τ mod 1) as described below. However given the

low SNR of the CDMA signal, it requires a brute-force search over frequency and code-phase

space to get the coarse estimates. Since each satellite needs to be acquired independently, in

subsequent analysis, we will consider the signal only from one satellite and treat signals from
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other satellites as noise. Thus

sr(t) =
√
P D(t− τ)x(t− τ) cos(2π(fIF + fd)t+ θ) + ñ(t)

where ñ(t) = n(t) +
K−1∑ √

PiDi(t− τi)xi(t− τi) cos(2π(fIF + fd,i)t+ θi)

Now, refer to Figure 2.11. Here, the receiver begins recording from some arbitrary point

in the signal. The nearest beginning of the PRN sequence is say a τc ms away. We will refer

to this as the acquisition code-phase. Note that actually τc = (τ modulo 1ms). Consider a

time interval of length Tint, which is a multiple of 1ms, the length of PRN codes. sr(t) is co-

related with a local signal generated according to receiver’s estimate, say {f̂d, τ̂c}. Co-relation

is computed as:

RI(f̂d, τ̂c) =

Tint∫
0

sr(t)x(t− τ̂c) cos(2π(fIF + f̂d)t) dt

RQ(f̂d, τ̂c) =

Tint∫
0

sr(t)x(t− τ̂c) sin(2π(fIF + f̂d)t) dt

Let, R(f̂d, τ̂c) = RI + jRQ, where j =
√
−1,

‖R(f̂d, τ̂c)‖2 = R2
I + R2

Q

‖R‖2 is known as the ambiguity function. The aim of acquisition is to search over the space of

f̂d, τ̂c to find a distinctly high value of ‖R‖2 . Since PRN code of a satellite correlates strongly

only with a correctly aligned PRN code of the same satellite, presence of a peak confirms

presence of signal from that satellite and also identifies the correct alignment. If such a peak

occurs, the satellite is declared present, the bin f̂d, τ̂c at which it occurs is chosen as the coarse

estimate and the receiver proceeds to tracking. Let {f̃d, τ̃c} be the estimates concluded from

the acquisition process. Thus the output of acquisition is,

{f̃d, τ̃c} = argmax
{f̂d,τ̂c}

‖R(f̂d, τ̂c)‖2

Alternatively, R can be written in complex notation.

R(f̂d, τ̂c) =

Tint∫
0

sr(t)x(t− τ̂) e(j2πf̂dt) dt

Substituting for sr(t) from 2.3, we get,
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R(f̂d, τ̂c) =

Tint∫
0

(√
PrD(t− τ)x(t− τ) cos(2π(fIF + fd)t+ θ) + ñ(t)

)
x(t− τ̂c) e(j2π(fIF +f̂d))t) dt

=

(√
Pr

Tint∫
0

D(t− τ)x(t− τ)x(t− τ̂c) cos(2π(fIF + fd)t+ θ)e(j2π(fIF +f̂d)t) dt

)
+ ñ

where ñ is a term resulting from noise. If Tint is taken much less than 20ms, like 1 or 2ms, then

D(t) would be constant in the interval. So take it to be D = ±1 (neglecting the possibility a

data bit boundary in the Tint-long segment). When τ̂c = τc(= τ modulo 1), x(t− τ)x(t− τ̂c) =

x(t− τ)2 = 1. Then,

R(f̂d, τc) =
√
PrD

Tint∫
0

(
ej(2π(fIF +fd)t+θ) + e−j(2π(fIF +fd)t+θ)

2

)
ej2π(fIF +f̂d)t) dt+ ñ

=
√
PrD

Tint∫
0

(
ej(2π(2fIF +fd+f̂d)t+θ) + ej(2π(f̂d−fd)t+θ)

2

)
dt+ ñ

Since 2fIF � 1
Tint

, we have
Tint∫
0

ej(2π(2fIF +fd+f̂d)t+θ)dt ≈ 0

∴ R(f̂d, τc) ≈
√
PrD

Tint∫
0

(
ej(2π(f̂d−fd)t+θ)

2

)
dt+ ñ

=

√
Pre

jθ

2
D

Tint∫
0

(
ej2πδfd t

)
dt+ ñ (δfd = f̂d − fd)

= (Dejθ
√
Pr)

sin(πδfdTint)

2πδfd
eπδfdTint + ñ (2.5)

Neglecting the effect of ñ, observe that:

• ‖R‖2 is independent of θ and D. Thus acquisition process will function the same without

modification irrespective of the carrier phase on reception and the navigation data in the

chosen signal segment

• limδfd→0 ‖R‖2 = Pr. For values of {f̂d, τ̂c} other than {fd, τc}, ‖R‖2 < Pr. Thus ideally,

under low noise conditions, output of acquisition are the actual Doppler and code shifts.

The Doppler shift in frequency is in most cases known to be in within ±6kHz. Hence the

frequency search space is −6000 ≤ f̂d ≤ 6000. And since the PRN sequence lasts 1ms, code-
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Figure 2.12: Result of Acquisition procedure as a 2D plot on frequency code-phase plane

phase search space is 0ms ≤ τ̂c < 1ms. If we could search over all possible values in this

search space, we can obtain the the exact Doppler shift and align the local code generator

exactly with the incoming signal. This routine could be repeated every once in a while when

Doppler frequency or the code-phase has changed and realign the receiver. However, it is

not possible to search over the entire search space, so we discretize the search space with a

frequency bin size of say ∆fd and code-phase bin of ∆τc. That is, the ambiguity function is only

computed for every ∆f th
d frequency and every ∆τ th

c code-phase shift. And hence the estimates

{f̃d, τ̃c} thus obtained are ‘coarse’. To check all code shifts in the PRN sequence of length

1023, we need ∆τc ≤ 1
1023ms and for reasons detailed in Chapter 3, we need ∆fd ≤ 500Hz

if Tint = 1ms. If we take them as 1
1023ms and 500Hz, the output f̃d and τ̃c will be among

{−6000,−5500, · · · − 500, 0, 500, . . . , 6000}Hz and {0, 1
1023 ,

2
1023 . . .

1022
1023}ms respectively. The

number of ambiguity functions to be computed (or size of search space) is 6000−(−6000)
∆fd

× 1
∆τc
≈

24, 000. Performing 24,000 correlations is a computationally expensive task, thus even after

discrete-izing the search. Besides, fd and τc change only slowly and smoothly with time. So

it is wasteful to perform acquisition often. In practice, acquisition is thus performed only once

while the receiver is cold-started. The resulting coarse estimate is used as the initial condition

for the tracking block which then settles to the a finer estimate and tracks fd and τc to keep

the receiver aligned with incoming signal thereafter. An example of acquisition output is shown

in Figure 2.12. As long as the SNR is high enough (typically ≥ 40 dB-Hz), it is unlikely that

noise generates a peak which is higher than at the nearest estimates for {fd, τc}. Let us assume

so and proceed to tracking.

In GPS, on cold start, the receiver has no information about the visible satellites. Thus it

performs acquisition with all satellite PRN codes till it finds 4 or more satellites. In case

of IRNSS however all the 7 satellites (as of June 2017) are visible all the time over Indian
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Figure 2.13: Effect of Residual Doppler after acquisition. Green implies inverted code-chips

subcontinent. The estimates {f̃di, τ̃ci} for each of the satellites are used to initializes that many

separate tracking loops. Each such loop is called a ‘channel’ and the specification, ‘number of

channels’ in a receiver refers to the maximum number of satellites that the receiver can track

simultaneously. But sometimes it also simply refers to the number of correlators in the receiver.

The number of channels can be as large as 22 to track multi-constellation satellites for better

accuracy or simply to reduce time-to-first-fix by computing many correlations parallel.

2.3.3 Tracking

We consider the tracking block for one satellite. If acquisition detects the correct peak, the

receiver concludes the estimates {f̃d, τ̃c}, where we have,

|f̃d − fd| ≤
∆fd

2
(2.6)

|τ̃c − τc| ≤
∆τc

2
(2.7)

The aim now is to not only decode the Navigation bits, but also to maintain the code-phase

synchronization thereby precisely detecting bit and PRN sequence boundaries, used in pseudo-

range computation. We now motivate the need and functioning of the two main components

that make up the tracking block.

PLL: Remove Residual Doppler and Phase

Observe from Equation 2.5 that, if δfd = 0, R = Dejθ (ignoring Pr and noise). Thus, ignoring

the effects of noise, if δfd = 0 is maintained, the data bit sequence can be obtained from the sign

of real (or imaginary) part of R alone, it is D cos θ (or D cos θ). Note that the bit sequence so

obtained will either by D or −D depending on what θ is, which can then be distinguished using

NAV frame elements, like the preamble. Moreover, we can find θ from the phase of complex

number R, and get D = e−jθR. This is like making θ zero, in which case all the power in the

signal is in the In-phase component. This is helpful because, when considering the effect of noise

term ñ = ñI + jñQ, taking the sign without correcting for θ actually gives sign[D cos(θ) + ñI ].
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Clearly, greater the θ, more likely is a erroneous flip in sign due to the noise term. Multiplying

by e−jθ gives, sign[D + ñ′I ]. ñ′I and ñI have same variance owing to circular symmetry of the

noise. Thus, compensating for the phase θ, after ensuring δfd = 0 gives a robust method for

decoding NAV bits. However, after acquisition, carrier can be removed except for a residual of
∆fd

2 . So, if ∆fd = 500Hz, a sinusoid with 0 ≤ δfd ≤ 250 Hz still modulates the baseband signal

D(t)x(t). And this residual keeps inverting the chip sequence as shown in Figure 2.13. If the

residual is of 100 Hz, it inverts the PRN sequence in every 5th replica, and NAV bit cannot be

decoded.

The tracking block of receivers have a Phase Lock Loop (PLL) to correct for the residual

Doppler frequency and the phase, finally shifting all incoming power to the inphase component,

the sign of which gives the NAV bit. Sometimes a Frequency Lock Loop is initially used

to correct for δfd and then followed with a PLL to correct for θ. Refer to Figure 2.14. The

basic function of a PLL is to track the phase of an input signal, so that the output signal is

phase-locked to input. Let the input be si(t) = cos(ωt+ φ(t)), where the frequency ω is known

and phase φ(t) is a function varying with time at a much slower rate than ω. A frequency mod-

ulated signal is one such example. Suppose the PLL outputs so(t) = cos(ωt+ φ̂(t)). First block

in the PLL computes the error e(t) = φ(t)− φ̂(t). The function that extracts phase difference,

or at least a good estimate of it, from the input and output signals is called the ‘discrimina-

tor’ function or the ‘phase detector’. A naive example would be [cos−1(si)− cos−1(so)], but in

practice we need something that can be computed easily. The error signal is then subject to

a filter, to minimize effects of noise and achieve desirable dynamical properties which decide

how fast a change can be tracked, how stable the loop is etc. The resulting feedback signal is

then fed to a signal generator, which speeds up or slows down according to the feedback, to

match the input phase. In hardware, it is usually a Voltage Controlled Oscillator (VCO). A

FLL is similar except that the first block would use a discriminator which computes difference

in frequencies irrespective of the phase and correct for it. In this report we will only describe

a PLL that corrects for phase and small frequency differences like the residual Doppler. We

treat (2πδfdt + θ) as the smooth slowly varying phase φ(t) and track it, not correcting for δfd
separately.

Let Φi(s),Φo(s), E(s) and Y (s) be the Laplace transforms of the the input phase, output

phase, error and feedback signals respectively. Note that we directly work with phase signals i.e

we assume the discriminator has given a good estimate of the input phase and that the signal

generator faithfully converts the output phase to output signal. Let K × H(s) be the PLL

filter transfer function. G(s) is the signal generator transfer function which is usually simply

an integrator (i.e G(s) = 1
s ). This is so because a VCO varies frequency in proportion to the

feedback input. Thus phase is obtained as an integral of the feedback.
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Figure 2.14: Basic Structure of a Phase Lock Loop

The PLL can thus be characterized as,

E(s) = Φi(s)− Φo(s) (2.8)

Y (s) = KH(s)E(s) (2.9)

Φo(s) = G(s)Y (s) (2.10)

∴ Φo(s) = KG(s)H(s) (Φi(s)− Φo(s)) (2.11)

Φo(s) =
KG(s)H(s)

1 +KG(s)H(s)
(2.12)

and E(s) =
1

1 +KG(s)H(s)
(2.13)

Now, K and H(s) can be chosen so that the roots of 1 + KG(s)H(s) lies in the left half of

complex plane, thus ensuring that the error signal vanishes over time and phase-lock between

input and output. Note that by introducing a constant offset in the discriminator function, we

can use the same concept to maintain an output at a fixed non-zero phase difference form the

input as well. In particular we can generate sin(ωt+ φ̂(t)), along with cos(ωt+ φ̂(t)) shown in

Figure 2.14. This is used the GPS receiver as described below. In a GPS receiver, the input

to PLL is the raw GPS signal from the front-end after stripping it off the PRN code based on

the code-phase estimate. In short it is just the residual sinusoid multiplied with NAV bits and

additive noise i.e si(t) = D(t − τ) cos
(
2πfIF t + (2πδfdt+ θ)︸ ︷︷ ︸

φ(t)

)
+ ñ(t). Once we obtain a signal

from PLL, phase locked to this residual and its quadrature signal (i.e both sine and cos), we can

use it to remove the residual, leaving behind only the NAV bits. We simply compute a R-like

correlation between the raw GPS input signal and the PLL outputs, and observe the sign of

real part of the result. This gives the NAV bit D (or −D). Also, the frequency of PLL output

signal actually tracks the Doppler frequency in raw GPS signal. Note however that keeping the

synchronization with code-phase to remove the PRN sequence is crucial for functioning of the

PLL and the next section describes how it is done using the Delay Lock Loop.

After having ensured that the PLL error converges to 0 with time, the guidelines listed
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below must be considered in designing KH(s) for GPS/IRNSS receiver. Although a continuous

time PLL was described, the intuition behind designing a digital PLL like the one used in the

implementation, remain the same.

• Noise: Since GPS signal is very noisy, the discriminator must construct a phase difference

estimate which is robust to noise. The estimate can not be based on individual signal

samples like cos−1(si(t)), since they would be too noisy. Rather, the estimate should be

generated as an average of the phase over long times to minimize the effect of noise and

then fed to PLL. Hence, as we will see in Chapter 3, the GPS/IRNSS PLL operates with

an update rate of 1 kHz, while the samples are actually arriving at 4 MHz.

• Agnostic to 180◦ phase difference: Since the input to PLL is D(t) cos(ωIF t+ φ(t)), it will

have abrupt phase change of π at NAV bit boundaries. So when D(t) changes from +1

to −1 for instance, the phase detector will see the phase change from φ(t) to φ(t) + π.

This sudden large change in discriminator may prompt the PLL to give a large corrective

feedback, while infact we do not want the PLL to respond to it and preserve the Data bits.

PLL discriminators are insensitive to shifts of 2π, since cos(ωt+φ(t)) and cos(ωt+φ(t)+2π)

are the same signals. However, in GPS receiver we need discriminators insensitive to π

shifts, due to NAV bits. So an ideal discriminator function for GPS should compute

(φ(t) − φ̂(t)) modulo π. Discriminator called atan or tan−1 discriminator is used in the

software implementation. It is discussed in Chapter 3.

• Capture Range: Capture range is the maximum frequency offset that the PLL can correct

when it is started. In our case the frequency offset is δfd which at most can be ∆fd
2 . Thus

PLL must be designed with a Capture range of atleast ∆fd
2 .

• Lock Range: Lock range is the maximum sudden change in the input frequency that the

PLL can correct for. In GPS receivers, a local oscillator (LO) is used to down convert the

signal from fL1 to fIF . LO’s may have sudden drifts in their outputs which will reflect in

the PLL input as offsets in ωIF . The PLL should be able to compensate for it, lest the

lock will be lost and receiver may have to initiate acquisition all over again. Thus the lock

range should be decided based on stability of LO used.

• Dependence on input power: The SNR and hence signal input power keeps changing. If

the discriminator function is dependent on the input signal power, the error signal may

vary as input power varies and it is undesirable. Except in the case where signal is one-bit

sampled, the receiver may need an Automatic Gain Control (AGC) in the analog front-

end to maintain input power,else the PLL discriminator should measure phase difference

insensitive to signal powers.

The detailed analysis of the PLL used in the implementation is given in Chapter 3.
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Figure 2.15: Exaggerated illustration of changing code-phase due to Doppler. Doppler shift in
this case is negative. The incoming code is wider than 1 ms.

DLL: Keep the code aligned

As noted before, it is necessary that the locally generated code x(t − τ̂c) is always aligned to

the PRN codes in incoming signal x(t− τc) to remove the codes in the signal and let the PLL

lock. A Delay Lock Loop (DLL) performs this function, in particular:

• Acquisition gives a coarse estimate τ̃c of the code-phase. The maximum error in this

estimate can be as high as 1
2×1023 ms from Equation 2.6, which implies a pseudo-range

error of about 3×108

2×1023×10−3 ≈ 150 meters. The DLL refines the estimate from acquisition

to get exact code alignment.

• So far the effect of Doppler shift on PRN codes was ignored, but now we see how it

necessitates a continuously running DLL. If the satellites and receiver were stationary with

respect to one another, the receiver generated code once aligned would remain aligned with

incoming code (assuming the receiver code generator clock itself does not drift). With no

change in code phases the pseudoranges would all remain constant, which is as expected

for stationary satellites. When there is relative motion there is Doppler shift which is

simply a manifestation of changing distance between satellite and the receiver. If the

satellite is moving away every next chip transmitted must travel a larger distance to reach

the receiver. Thus the PRN code, 1 ms long when transmitted, will be stretched to more

than 1 ms on reception. Refer Figure 2.15. The receiver on the other hand is generating

the PRN sequence in 1 ms intervals. So it will see the code-phase increasing over time

(in Figure 2.15, τc and τ ′c are code-phases of subsequent Tint segments. And τc > τ ′c).

This in turn will increase the computed pseudoranges with time, which is as it should be

for a satellite moving away. Similarly, for a satellite moving towards receiver, code-phase

decreases with time. A DLL is required to track these changes.

The rate of change of code-phase due to Doppler is typically less than 4 chips per second,

as computed before. DLL works using the smooth variation in the autocorrelation of the PRN
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Figure 2.16: Construction of the correlation curve. Working of DLL using correlation curve
is shown in lower right corner. E, P, L stand for Early, Prompt and Late correlation values
respectively.

sequence x(t) in under one-chip shifts about perfect alignment i.e

R(l) =

1 ms∫
0

x(t)x(t+ l)dt

in the range l ∈ (−Tc, Tc). Note that x(t+ l) is actually a circular shift, i.e x((t+ l)mod 1 ms).

Figure 2.16 shows plot of R(l) in region of interest. Acquisition gives code-phase within one-chip

of the aligning code-phase. So by shifting the locally generate code by τ̃c its correlation with the

code in incoming signal is somewhere on the correlation peak. If it lies on the rising edge of the

curve, receiver needs to shift its code slightly to the right to move towards perfect alignment.

On the falling edge, it needs to move left. To identify the edge it is on w.r.t incoming signal

x(t − τ) and the magnitude by which it should shift the local code, DLL does the following:

Choose a dither value ∆c ≤ Tc
2 .

Step 1: Compute correlations RE =
1∫
0

x(t− τ̃c−∆c)x(t−τ)dt and RL =
1∫
0

x(t− τ̃c+∆c)x(t−τ)dt.

They are called the Early and Late correlations respectively. ( RP =
1∫
0

x(t− τ̃c)x(t− τ)dt

is the Prompt correlation)

Step 2: Find the difference δR = |RL| − |RE |.
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Step 3: Update code-phase τ̃c = τ̃c −KcδR. Go to Step 1

KDLL is the feedback constant and should be chosen such that the update KDδR is never more

than Tc
2 for two reasons. Firstly, it is clear that the DLL will work as long as it is on the

correlation curve or within d ms from it i.e |τ − τ̃c| ≤ (Tc + ∆c). So we limit the feedback to

ensure the prompt point is not thrown out of the curve. Secondly, to avoid oscillation where the

prompt point keeps jumping from one edge to the other. With appropriate choices of Kc and

∆c, the DLL tracks the code-phase. More generally any function of RL and RE that indicates

their difference can be chosen as feedback. In the implementation δR = |RL|2 − |RE |2 is used.

This is to eliminate the effect of carrier phase θ as in acquisition.

It should be noted at this point, that the Doppler shift in PRN sequence is exactly related to

Doppler in carrier ( fd∗1.023
1575.42 = fd

1540). Thus ideally a single PLL should be enough to adjust for

code-phase change due to Doppler as described above. DLL would be required only to correct

the acquisition estimate and would be used only in the beginning of tracking till the PLL locks.

If this works, there is no need to keep the DLL running at all times. This works well in most

cases. But if there is an event where PLL unlocks, then the PLL may not lock back, as the

code-phase lock would be lost. Thus it is best to keep a separate DLL to maintain code-phase.

Besides this, the fd that PLL locks to may not be the exact Doppler shift and may include the

frequency offset in the local oscillator used for down-conversion.

Post-acquisition, the DLL begins tracking the code-phase and facilitates the PLL to lock.

Both the loops simultaneously operate to output the code-phase τ and NAV bits D as long as

both are locked. Four or more such tracking blocks have to be running in a receiver, to track

each of the visible satellites and compute the user position.

2.3.4 Navigation Bit Processing

Once tracking loops for atleast 4 satellites are locked, 4 NAV bits data stream can be recovered.

Following are the typical steps thereafter:

Step 1: Detect beginning of a subframe by searching for preamble in each of the NAV data streams

Step 2: Once detected, the first edge of the preamble of one of the satellites can be taken as

reference (usually the one to occur the earliest) and the time delay to all other preamble

edges w.r.t the reference can be measured in terms of difference in PRN replicas and code

chips as discussed in 2.3.1.

Step 3: The time of travel of signal for the reference satellite is taken to be a reasonable but arbi-

trary value, like 65 ms and multiplied with c = 299792458 m/s, to get a base pseudorange

of 19,486 km.

Step 4: All other pseudoranges are computed as the base value plus c multiplied by the preamble

delays measured in Step 2.

Step 5: Recover the entire frame (30 seconds long) and get satellite positions and other correction

parameters for each of the satellites.
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Step 6: Compute the user location by solving the pseudorange equations.

Step 7: Once the preambles are detected, the tracked code-phases can be used to compute changes

in pseudoranges and hence user location any time thereafter using Step 5 and 6.

So, in GPS receiver, given NAV data stream D(t) of one satellite, first step is to find the

preamble, 10001101, with each bit lasting 20ms. D(t) is correlated with preamble to identify

matches. However the preamble sequence may occur anywhere in the data and hence there are

many matches. Some additional steps will sieve out the actual preamble. First of this is the

parity check. Table 2.17 describes the encoding scheme used in GPS words. So, we can form a

32 bit sequence by taking the 29 bits following and 2 bits preceding the first bit of the preamble

matching sequence. Then parity check can be done by computing D25, D26, . . . , D30 as shown

in the table and match them with the last 6 bits of the 32-bit sequence. If they match, the

sequence has passed the parity check, and the 30-bit word is indeed the beginning of a subframe,

with high probability. However very rarely some false preamble pass the parity test too. In this

case one can test for the parity of next 30 bit word. Additionally some permanent bits like, bit

numbers 23, 24 (always 1) and bit number 59, 60 (always 0) in every subframe can be used to

check validity of detected words.

IRNSS however uses convolution codes with interleaving, 16-bit sync preamble, and 24 CRC

parity bits all of which are different from GPS. So an appropriate decoder needs to be im-

plemented to detect, extract and validate the frames. But the essential steps of pseudorange

computation remains the same.

Conclusion

This chapter outlined all the basic concepts of GPS signal processing. The special signal struc-

ture of GPS/IRNSS signals was presented in detail. This was followed by a discussion on the

salient features of the signal on reception. The goals of GPS signal processing were listed

and procedures involved in fulfilling them namely, acquisition, tracking and pseudorange com-

putation were discussed. How the signal structure enables measurement of time of travel was

explained. Working of acquisition and tracking blocks was discussed in detail, along with design

guidelines and intuitions behind why they work. Now we look at practical details of implement-

ing a GPS receiver.

bc
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Figure 2.17: Parity encoding in GPS signal. Reproduced from [10]
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Chapter 3

Design & Analysis of the Receiver

Having introduced the signal processing blocks involved in reception of GPS signals, we now

discuss in detail the design parameters of these blocks, their interdependences and rationale

behind choices made in the software receiver implementation presented in Chapter 4. Section 1

and Section 2 deal with Acquisition and Tracking parameters respectively. Section 3 describes

the pseudorange computation algorithm used in the software implementation.

3.1 Acquisition Block Design

As discussed in Section 2.3.2 acquisition block has three main parameters namely, the coherent

integration time, Tint, frequency search bin width ∆fd and code phase search bin width ∆τc.

There is a fourth parameter, the detection threshold Vth. Usually, if the acquisition peak is

greater than Vth the receiver declares the satellite found, else it either does a finer search or

aborts search for the satellite and moves on to the next satellite.

Number of correlations to be performed in acquisition is inversely proportional to ∆fd and ∆τc.

Also, computational cost increases proportional to Tint. Thus the aim is to find reasonable

values of each of these parameters, under constraints on detection probabilities. Exact detection

probabilities (detection, false positive, false negative probabilities) are not computed here and

leads can be found in [2].

3.1.1 Integration Time, Tint & Doppler Search Bin-Width, ∆fd

With fd as the Doppler shift,the carrier in received signal will be cos(2π(fIF + fd)t + θ). To

analyze, view each correlation computation in acquisition as sequence of three steps. First,

multiplication by the received carrier with locally generated carrier of estimated Doppler fd,

next multiplication by shifted PRN code, and finally the integration for duration of Tint to obtain

the correlation. In the first step, receiver multiplies cos(2π(fIF + fd)t + θ) with cos(2π(fIF +

f̂d)t) and sin(2π(fIF + f̂d)t), then the low frequency component in the resulting signal will be

cos(2π(fd − f̂d)t + θ) and − sin(2π(fd − f̂d)t + θ) (we ignore the high frequency component of

(2fIF + fd + f̂d), since it will vanish anyway in subsequent integration). Thus a residual carrier
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of (fd− f̂d) Hz will remain in the two signals, before we correlate with the PRN code to wipe-off

the code. Refer to Figure 3.1. If (fd − f̂d) is small, no matter which 1ms segment we take, the

PRN code will be retained (or fully inverted) in atleast one of cos and sin signals. So when PRN

code is correlated with such resulting signals, atleast one of RI and RQ will be large resulting

in a large value for R. However if (fd − f̂d) is large, the entire code may not be retained in

either of the signals for some segments. In such cases some parts of underlying PRN codes is

inverted with respect to other parts and resulting in lower values even on correlating it with

PRN code of correct code phase. It is easy to see from the Figure, that to retain the code, we

need residual (fd − f̂d) ≤ 250 Hz for Tint = 1ms. More generally we need (fd − f̂d) < 1
(4Tint)

.

If we search with frequency bin width of ∆fd, even the nearest estimate may leave a residual

of atmost ∆fd
2 . For instance, let fd = 1740Hz. If we take ∆fd = 500Hz, we will search at

0, 500, 100, 1500, and so on. The nearest estimate of f̂d = 1500Hz will leave a residual of 240Hz.

Thus for good correlation output, we need,

(fd − f̂d) ≤
∆fd

2
≤ 1

(4Tint)

=⇒ ∆fd ≤
1

(2Tint)

For Tint = 1ms, we have ∆fd ≤ 500Hz, so we take it to be 500Hz in software implementation.

Partial correlation is not the only reason to limit value of ∆fd. After code-wipeoff and inte-

gration, the final value of correlation is given by Equation 2.5. The value is a sinc function in

(fd − f̂d)Tint, which highlights the same dependence between fd and Tint as discussed above.

Limiting this loss to a factor of 0.9032, for instance, gives ∆fd = 500Hz [16]. The empirical

rule usually considered in GNSS literature is ∆fd ≤ 2
3Tint

, which is 667 Hz for Tint = 1ms, even

though it causes some correlation loss due to code inversion [3]. One more consideration in

choosing ∆fd is the capture range of PLL in tracking block. As discussed in Section 2.3.3, we

need capture range ≥ ∆fd
2 . Else PLL may not lock or lock to the wrong frequency as discussed

in next section.

It is clear that increasing Tint, increases the search space by that many times. On the other

hand, integrating over larger Tint will reduce noise variance and give better correlation peaks.

But beyond a point, increasing Tint increase the chance of having a NAV bit boundary in the

Tint segment, resulting in cancellation of correlations on either side of the boundary and low

net correlation. Thus in acquisition, Tint is taken as either 1ms or 2ms.

3.1.2 Code-Phase Search Bin-Width, ∆τc

The code phase spacing ∆τc should be such that correlation with at least one code phase should

fall on the correlation curve of the PRN code (Refer Figure 2.16). It is clear that if ∆τc < 2Tc,

this is achieved. If the SNR is good, even a slight alignment of the codes at the edges of the

correlation curve may result in distinguishable peak. However, if not, it increases the chance

of missing the signal like in Figure 3.3 (marked in red). So we take ∆τc ≈ Tc. Also, if the
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Figure 3.1: Code is retained in at least one component if (fd − f̂d) < 1
(4Tint)

. Here Tint = 1ms

sampling rate is Fs we can change code-phase only by shifting the samples i.e ∆τc is a multiple

of 1
Fs

. This gives ∆τc = 1
Fs
d TcFs
e, where d.e is the ceiling function. With Fs = 4MHz, ∆τc = 4.

3.1.3 Threshold Vth and detection decision

Once the correlation over the entire search space is done, the receiver needs to find the peak

and decide if the peak value is large enough to decide detection. There are many works on

coherent detection problem. Refer to [4], [2]. A simple method is to have a threshold Vth for

the peak value. A good choice would be Vth ≈ 3σñ2 where σñ2 is the variance of noise term n in

correlation output. Note that, this however will make the threshold dependent on input signal

power. So unless there is AGC (automatic gain control) in the front-end, this method requires

Figure 3.2: Bin width < Tc gives atleast one good correlation (marked in purple )
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dynamically changing the parameter Vth.

In the software implementation, if the satellite is not detected in the current Tint long segment,

the receiver takes the next segment for acquisition. It does so Nattempt times, which is currently

arbitrarily chosen to be 10. At each attempt threshold is checked. Sometimes the peaks do not

cross the given threshold, but the presence of signal is clear from repeated peaks in the same bin

in successive segments. Thus in each attempt, the receiver checks for repeat peaks (Refer to the

function Acquisition in Chapter 4). If either threshold is crossed or a repeated peak is found,

the receiver declares acquisition successful, stops further attempts and proceeds to tracking. In

many commercial receivers, coherent integration is followed with non-coherent averaging i.e the

correlation for each bin, with successive segments is averaged and then threshold is checked.

This is used to detect signals at very low SNR, but it requires remembering the entire search

space result for previous segment unlike checking for repeated peaks. Much better methods for

acquisition exist and some are discussed in [3]. What has been described here is the method

‘Serial Search’ Acquisition. FFT based parallel methods are much faster, but have significant

hardware cost. These methods are best when a DSP is to be used for acquisition [16].

3.2 Tracking Block Design

We now look at parameters involved in the DLL and PLL comprising the tracking block.

3.2.1 DLL

DLL uses the early late correlator to correct for the code-phase. In practical receiver, early-late

feedback is used to adjust the speed of generation of the local PRN code, which in turn adjusts

code-phase. This has the advantage that the Doppler effect on the code also gets considered

since the time duration of local PRN code is stretched or shrunk according to whether actual

code-phase is leading or lagging the local code-phase due to Doppler. In the software receiver

described here however, the PRN code is always 1ms long and only code phase is adjusted with

feedback constant Kc. Thus the DLL has two parameters, Kc and the dither ∆c. As discussed

in Section 2.3.3, we need dither ∆c ≈ Tc
2 . Accordingly, take ∆c = ∆τc

2 . With Fs = 4MHz,

∆c = 2. Choice of Kc is based on ensuring that the DLL remains on the correlation curve.

The largest possible early-late feedback is the height of correlation curve. This happens when

one of early or late correlation perfectly aligns. The feedback constant Kc should be chosen

such that even in that case, the code-phase moves by half-chip. So if Vp is the peak correlation,

Kc ≤ Tc
2Vp

. Though the peak value from acquisition will be less than, it can be taken as an

estimate for Vp and Kc can be accordingly set in the DLL. However, note that this makes Kc

depend on the input power-level. In practice Kc can be taken much smaller than Tc
2Vp

because

the code-phase, once aligned, shifts at a very slow rate of about 1 chip in 250 ms and requires

only slow-tracking. So, Kc can be kept fixed at a small value, for a given front-end. Also, the

code-phase output of DLL is used in pseudorange computation. A larger Kc increases effect of

noise on code-phase and thus on the pseudorange computed.
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3.2.2 PLL

Continuing from Section 2.3.3, we design and analyze a PLL for GPS reception. Let the incoming

signal to PLL be r(t) = cos(2π(fIF + fd)t+ θ). The PLL has an estimate {f̂d, θ̂}, which should

eventually converge to {fd, θ}. First step is to reliably estimate the errors (fd − f̂d) and θ − θ̂.
So an appropriate discriminator must be used. So the receiver does the following:

Generate v(t) = 2 cos(2π(fIF + f̂d)t+ θ̂) and u(t) = −2 sin(2π(fIF + f̂d)t+ θ̂) and multiply with

incoming signal. We get,

r(t)v(t) = cos(2π(fd − f̂d)t+ θ − θ̂) + high frequency component

r(t)u(t) = sin(2π(fd − f̂d)t+ θ − θ̂) + high frequency component

Let ∆ω = 2π(fd − f̂d) and ∆θ = θ − θ̂. To remove the high frequency component and reduce

the noise variance, integrate the outputs from current time T1 to time T1 + T ,

I =
1

T

T1+T∫
T1

cos(∆ωt+ ∆θ) dt

=
1

T

2

∆ω
sin
(∆ωT

2

)
cos
(

∆ω
(2T1 + T )

2
+ ∆θ

)
Q =

1

T

T1+T∫
T1

sin(∆ωt+ ∆θ) dt

=
1

T

2

∆ω
sin
(∆ωT

2

)
sin
(

∆ω
(2T1 + T )

2
+ ∆θ

)

Now to extract the phase-difference, we use the tan−1 discriminator,

er = tan−1

(
Q

I

)
= sign

(
Q

I

)(∣∣∣∣∣∆ω (2T1 + T )

2
+ ∆θ

∣∣∣∣∣ mod
π

2

)

If T1 = 0, we get the error term er = (∆ωT )
2 + ∆θ. We see that if ∆ω were 0, the signals would

be locked with one update of θ̂ = θ̂+ er. Similarly, if ∆θ = 0, f̂d = f̂d + 1
πT er would be enough.

When both are non-zero, suppose we use the update rules,

θ̂ = θ̂ +K1er

f̂d = f̂d +K2er

We need to find suitable values of K1 and K2, such that the error converges to zero eventually.

We will model this as a two state digital system, with states ω[n] and θ[n], assuming that the

Doppler frequency remains relatively constant in intervals of time T , and the estimates ω̂[n]

and θ̂[n]. T1 can be always be taken 0, by updating θ[n] and θ̂[n], with phase accumulated in
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Figure 3.3: PLL Loop Updates Illustration. The colored waveform eventually locks with the
input waveform. Both frequency and phase are updated every epoch

time T . It is then easy to verify,

er[n] =
(ω[n]− ω̂[n])

2
T + θ[n]− θ̂[n] (3.1)

θ[n] = θ[n− 1] + ω[n− 1]T (3.2)

θ̂[n] = θ̂[n− 1] + ω̂[n− 1]T +K1er[n− 1] (3.3)

ω̂[n] = ω̂[n− 1] +K2er[n− 1] (3.4)

Let Er(z),Θ(z), Θ̂(z),Ω(z), Ω̂(z) be the respective z transforms. Taking z transform and sub-

stituting, we get,

Er(z) =
(z2 − 1)

2z2 + (2K1 + L− 4)z + (L+ 2− 2K1)
Ω(z)T (3.5)

where L = K2T . Let H(z) = 2z2 + (2K1 + L− 4)z + (L+ 2− 2K1). Then,

Ω̂(z) =
L(z + 1)

H(z)
Ω(z) (3.6)

Θ̂(z) =
(z + 1)(L−K1 +K1z)

H(z)
Θ(z) (3.7)

The poles of this second order system are roots of H(z), which are,

−(2K1 + L− 4)±
√

(2K1 + L− 4)2 − 8(L− 2K1 + 2)

4

For a choice of K1,K2 and T , as long as these roots lie within the unit circle, the system will be

BIBO (bounded-input bounded-output) stable. The PLL will track the Doppler frequency and

lock to the input signal. Figure 3.4 shows PLL outputs for a good choice of parameters (actually
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Figure 3.4: PLL outputs for K1 = 1 and K2 = 40. PLL is initialized to 2000 Hz, while input is
at 2170 Hz. (Simulation)

the output may not be exactly locked to input, since pole-zero cancellations may happen. Even

in the Figure we see the error having small oscillations and constellation is not a single point.

However for all practical purposes, this does not matter much). In the implementation, K1 is

taken as 1, since that is the quickest way to correct for phase when ∆ω ≈ 0 as discussed above.

K2 is taken as 40 i.e f̂d feedback coefficient of 40
2π after it was experimentally found to be a good

trade-off between speed of the loop and its sensitivity to noise.

We now make some observations regarding the tan−1 discriminator function used.

• Discriminator output is independent of input signal power. Hence it does not require an

AGC in the front-end to function.

• Discriminator output is

(
∆ω T2 + ∆θ

)
mod π

2 . So it is immune to 180◦ phase shifts

• But on the other hand, the discriminator output is the same for ∆ω+ π
T k for any integer

k. That means, the PLL can not distinguish between fd and fd + 1
2T . Thus capture range

of the PLL is limited ± 1
4T . In GPS receiver we need T ≤ Tint as discussed in acquisition

block design. In GPS receivers generally T is taken to be 1ms and then gradually increased

as PLL locks. With T = 1ms, the capture range is ±250 Hz. So in acquisition with

∆fd = 500Hz, if the actual fd is near midpoint of two frequencies searched, like 2240Hz,

then noise can make acquisition block conclude the estimate as 2500Hz rather than the

nearer 2000Hz. In this case the PLL will lock, but to (2240 + 500)Hz. This needs to be
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Figure 3.5: PLL outputs for K1 = 0.5 and K2 = 40. PLL is initialized to 2000 Hz, while input
is at 2170 Hz. It does not lock. (Simulation)

separately taken care of.

• Since the tan−1 discriminator outputs
(

(∆ωT )
2 + ∆θ

)
mod ±π2 rather than just

(
(∆ωT )

2 +

∆θ
)

, the wrapping of error around ±π2 may cause the PLL to oscillate. Thus it may never

converge. Figure 3.5 shows an example. Whether or not the PLL gets into oscillations

may also depend on the initial phase offset (θ[0]− θ̂[0]). For instance, with K1 = 0.6 and

K2 = 200 and initial frequency offset of 200 Hz, PLL locks if (θ[0] − θ̂[0]) = 0, but does

not if (θ[0]− θ̂[0]) = π
3 However noise can actually help by disturbing the fine balance that

is need to maintain oscillations and pull the PLL out of it, as in Figure 3.6.

• The discriminators immunity to 180◦ phase shifts creates the problem of NAV bit flips.

Consider the following example:

θ = 0.4π, θ̂ = 0 and ω = 510, ω̂ = 500. Let T = 1ms, K1 = 1.

Feedback = 2π(50T )
2 + 0.4π = 0.45π

∴ θ̂ = 0 + 2π(500)T + 0.45π = 1.45π

While θ = 0.4π + 2π(510)T = 1.5π.

Clearly, in the next few iterations the two signals will phase lock. Observe the feedback

0.45π. Values near to 0.5π result when I is small in tan−1

(
Q
I

)
. When I is small, a little

noise can flip its sign and result in the feedback −0.45π instead of 0.45π. Then,

θ̂ = 0 + 2π(500)T − 0.45π = 0.55π
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Figure 3.6: PLL outputs for K1 = 0.5 and K2 = 40 with 0 dB noise. PLL is pulled out of
oscillations

θ − θ̂ ≈ π. Now the PLL is moving towards settling with a phase difference of π. Thus a

small amount of noise at the right instance can result in PLL flips. This is problematic

since output sign of I is used to conclude the NAV data bits. As long as sign(I) consistently

gives D or −D, we can decode the frames. But if it randomly switches, it may lead to

erroneous NAV data words. Possible solutions are:

– Use larger T to reduce the effect of noise. This can be employed once the PLL has

locked. But increasing T involves additional computational costs.

– Cap the feedback. As discussed above, noise is more likely to affect when I and Q are

such that they result in large feedback. So we cap the maximum absolute feedback

value to say 0.25π. In this case, a switch in sign would have given −0.25π instead of

0.25π and caused a net error of 0.5π in the phase estimate, thus it can still converge

back. However, even the cap will not help if two such events happen consecutively,

resulting in a phase difference of π. The software implementation uses a cap at 0.25π.

We can make the bilinear transformation on the z−domain equations and derive the rise time.

However it is sufficient to remember that rise time changes in inverse proportion of K2. This

was experimentally found and is intuitively easy to see why this holds.

Measure of Lock

The receiver needs to know the extent to which the PLL is locked to decide if the sign(I)

output is valid for further processing. So we need a ‘lock detector’. We use the function,
(I2−Q2)
(I2+Q2)

commonly used for the purpose. It is easy to see that it is actually cos
(

2 tan−1
(
Q
I

))
.

So as the error tends to zero, the lock measure tends to 1. However the function was found to

be noisy with real GPS data. So, in the implementation, lock measure is low pass filtered with
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Figure 3.7: Detecting Bit Boundary and measuring relative time of arrivals

the IIR 1
1−αz−1 , which eventually settles to 1

1−α . With α = 0.9, it settles to 10. So the receiver

can keep a threshold of 5 on the lock measure to declare that the PLL is locked and detect

when the PLL unlocks.

3.3 Computing pseudorange

As discussed before, to calculate the receiver position we need to compute the difference between

pseudoranges of satellites. This can be obtained by measuring the difference in times of arrival

of the signals, sent by the satellites at the same time (common transmission method, Section

2.3.1). So we measure time difference between arrival of the preamble from different satellites,

as accurately as possible. The accuracy is limited to 1
Fs

, but may be improved by interpolating

for times of arrival of signal between two samples. Here we describe how the software receiver

measure this delay.

Every Tint, PLL outputs sign(I). Suppose we collect these in to a data array {D[n]}∞n=0,

with elements indexed as D[0], D[1], . . . and so on, D[0] being the first output after PLL is

switched on. There will be K such channels, one for each satellite. Let the data arrays be,

Di for i = 1, 2, . . . ,K. First we need to wait until the PLL’s lock and the output sign(I)

becomes valid. For the ease of explaining, we assume that the PLL once locked remain locked.

After getting locked, the outputs of PLL gives the NAV data bits (or inverted ones), sampled

Tint apart. Let us take Tint = 1 ms. So one NAV bit will have 20 samples in the array D.

Once valid data begins coming through, the receiver waits for a NAV bit boundary, i.e a sign
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Figure 3.8: Measuring the delay between preamble arrivals using bit boundary difference and
code-phase. The red dotted segments are used by the PLL in sign(I) computation. Bit boundary
difference (B2−B1) gives difference between these epochs. To get the actual difference between
preamble arrivals P1 and P2, code-phase from DLL must be used along with (B2 −B1)

Figure 3.9: Result of aligning PLL Tint segments with incoming PRN sequence. Orange dots
denote sign(I) output without this alignment and blues ones. after alignment
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change in the PLL output sign(I). Let us say the bit boundaries occur at indexes mi in the

data stream Di for i = 1, 2, . . . ,K. We choose the satellite with largest mi, say mref as the

reference satellite, say svref . We know that all data streams Di, definitely have valid data

from index mref onwards (subject to our assumption that once locked, PLL remains locked).

The relative offset of the NAV bits, which will be an integer between 0 and 20, can now be

measured as shown in Figure 3.7. Recall that the signals arrive from different satellites with

delays typically less than 15 ms, i.e within one NAV bit for GPS. So the starting edges of the

preambles in Di’s will be coarsely separated by bit boundary difference. But these differences

have a resolution of 1ms. We need to use the code-phases at the preamble start bit boundaries

to get finer delay measurement. Figure 3.8 illustrates how this can be done. Hence in each

epoch, the PLL outputs the code-phase recorded by the DLL along with sign(I). Using the bit

boundary difference and code-phases we can get delays in preamble arrivals with an accuracy

of 1
Fs

(because that is the accuracy of code-phase measurement). Note that in the software

implementation (in the code, not included in the pseudocode), when the PLL starts, the PLL

Tint-segments are aligned with the incoming PRN codes, by taking the segments with a delay of

τ̃c with respect to the segments taken for acquisition. Recall that τ̃c is the code-phase estimate

from acquisition. This gives sharp changes in sign(I) at NAV bit boundaries, as shown in Figure

3.9. Clearly, the outputs with alignment show better segregation into +1 and -1. However the

alignment will eventually drift away due to Doppler and needs to be reset regularly.

Conclusion

This Chapter described the design parameters and methods used in the software implementa-

tion and presented the thought process behind the choices made. GPS reception being a widely

studied subject, superior ways of doing the tasks described here can be found in literature. This

report however outlines the most basic receiver and its characteristics, to act as a starting point

in the long process of building a practical receiver for IRNSS.

bc
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Chapter 4

Software Implementation of GPS

Receiver

This chapter describes the implementation of software receiver for acquisition, tracking and

pseudo-range computation, based on discussions in the previous chapter. The pseudocode is

documented in the Section 1. An implementation of the same in MATLAB/OCTAVE can be

found in Appendix A. The Section 2 describes the experimental setup used for data collection

and validation. Section 3 presents results and observations from the MATLAB implementation.

It should be noted that the same codes for acquisition and tracking can be used for GPS as

well as IRNSS, with the minor change of PRN codes used. In this report, ’software receiver’ is

used to refer to the specific implementation of the receiver described in this document unless

otherwise specified.

4.1 Software Receiver pseudocode

We now define symbols and conventions used in the pseudocode description.

• {A[n]}n=L−1
n=0 will denote array A1×L of length L, with its elements indexed from 0 to

L − 1. The array can be initialized as {A[n]}n=L−1
n=0 ← x, which means all elements of A

are set to scalar x.

• A[k] will denote the (k + 1)th element of array A. Let {A}k2k1 denote the k2 − k1 + 1 size

sub-array formed by {A[k1], A[k1 + 1], . . . , A[k2]} in same order.

• Circular Left Shift: For any integer N , array AN , resulting from circularly N -left shifts

of any finite n length array A1×n is defined as:

AN := (A� N)

=⇒ AN [i] = A[(i+N) mod n] ∀ i ∈ [0, n− 1]

Similarly circular right shift A� N can be defined. It would simply be A−N .
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• Dot Product: Scalar value DA,B,C resulting from dot product of any finite n length

arrays A1×n, B1×n and C1×n is defined as:

D := A
⊙

B
⊙

C

=⇒ DA,B,C =
n−1∑
i=0

A[i]B[i]C[i]

• Shift Register: For finite n length array A1×n, define,

B1×n := (x⇒ A)

=⇒ B[0] = x and B[i] = A[i− 1] for i = 1, . . . , n− 1

• For a sequence {s[n]}∞n=0 of samples, define the kth L length packet as the array,

PLk (s) :=

[
s[n]

]n=kL−1

n=(k−1)L

for k, L ∈ Z+

• For a real number x, sign(x) will return the sign of x for a non-zero x, and 0 if x = 0

• For binary numbers x and y, x⊕ y will denote the XOR operation

Also note, the parity check matrix used in ParityCheck M6×32 is [10] ,



1 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0

0 1 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0

1 0 1 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0

0 1 0 1 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 1 0 0 0 0 0 0

1 1 0 0 1 0 1 1 0 1 1 1 1 0 1 0 1 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0



SV 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Tap 1 2 3 4 5 1 2 1 2 3 2 3 5 6 7 8 9 1 2 3
Tap 2 6 7 8 9 9 10 8 9 10 3 4 6 7 8 9 10 4 5 6

SV 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 -

Tap1 4 5 6 1 4 5 6 7 8 1 2 3 4 5 4 1 2 4 -
Tap2 7 8 9 3 6 7 8 9 10 6 7 8 9 10 10 7 8 10 -

Table 4.1: Satellite-wise Tap Positions for C/A code generation in GPS (TapPosition array to
be used in pseudocode CACODE)
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Variable Definitions & Values

Variable Description Value

fI
Intermediate frequency to which the signal is down-
converted by the front-end to be sampled

-

Fs
Sampling rate at which the ADC samples signal from
front-end

4MHz

Tint
Time length of signal considered for code and carrier
wipeoff in each iteration of acquisition or tracking

10−3 sec

T
Number of samples of signal considered for code and
carrier wipeoff

TintFs = 4000

fR
Acquisition procedure searches for Doppler shift in the
range [−fR, fR]

6kHz

∆fbin
Acquisition procedure searches for Doppler shift in in-
tervals of ∆fbinHz, also known as frequency bin width

1
(2Tint)

= 500Hz

∆C
Acquisition procedure searches for code-shift in a
given packet at intervals of ∆C shifts

⌊
Fs

1.023MHz

⌋
= 4

sv Vehicle number of the satellite being searched for 1 to 32 for GPS,1 to 7 for IRNSS

Nattempt
Number of packets acquisition procedure tests before
declaring the satellite of given sv as ‘not found’

5 (arbitrary choice)

Vth
Threshold for the acquisition peak value, above which
satellite is declared as ‘found’

3000*

∆D Dither used in Early and Late correlations ∆C
2 = 2

θcap
The value at which the PLL feedback is capped to
prevent NAV bit flips

π
4

α 1st Order IIR filter pole applied on PLL lock measure 0.9

Kc
Feedback Constant used in the DLL. Let Vpeak be the
peak correlation value from acquisition

1
(2×Vpeak)

K1 Feedback Constant used in Phase update of the PLL 1

K2
Feedback Constant used in angular frequency update
of the PLL

40 (20
π in Hz)

Table 4.2: Variable Definitions and Values
(*For full precision samples, using the 20dB GPS antenna and USRP setup with 60dB gain)

4.1.1 Baseband Processing

In all of the discussion so far and in the pseudocode description, it is assumed that incoming

signal {s[n]}∞n=0 is at fIF > 0. However using a setup like the USRP as described below, will

downconvert the signal directly to baseband, leading to complex signal samples or equivalently

two streams of samples, the in-phase samples {sI [n]}∞n=0 and the quadrature samples {sQ[n]}∞n=0.

Let PI and PQ represent the respective packets. Following changes must be made:

• In the correlation computation step (1) of Acquire,
(
P
⊙
Ilo
⊙
Ĉ
)2

+
(
P
⊙
Qlo

⊙
Ĉ
)2

should be replaced with
(
PI
⊙
Ilo
⊙
Ĉ+PQ

⊙
Qlo

⊙
Ĉ
)2

+
(
PI
⊙
Qlo

⊙
Ĉ−PQ

⊙
Ilo
⊙
Ĉ
)2

.

Same applies for steps (3) and (4) of Track

• In step (1) of Track, replace
(
P
⊙
Ilo
⊙
Ĉ
)

with
(
PI
⊙
Ilo
⊙
Ĉ+PQ

⊙
Qlo

⊙
Ĉ
)
. Sim-

ilarly in step (2), use
(
PI
⊙
Qlo

⊙
Ĉ − PQ

⊙
Ilo
⊙
Ĉ
)
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Function Names & Descriptions

Function Name Description

vp, fp, cp ← Acquire(P , C)

Given T samples long array P , and PRN code C of a
satellite perform one iteration of acquisition. If satel-
lite signal is found, return peak correlation vp, ac-
quired Doppler frequency fp and code phase cp. Else
vp = 0

vp, fp, cp ←Acquisition({s[n]}∞n=0, sv)

For an input stream of signal samples {s[n]}∞n=0 sam-
pled at Fs, the function performs the Acquire proce-
dure Nattempt number of times, as described in Chap-
ter 3, for satellite sv

{D[n]}∞n=0, {Z[n]}∞n=0, lock ←
Track({s[n]}∞n=0, sv, faq, caq)

Given Doppler and Code-phase estimates faq, caq from
acquisition, for satellite sv, the function tracks the
signal to output data bits {D[n]}∞n=0 and code-phase
stream {Z[n]}∞n=0, at the rate of one reading per Tint.
It like one channel in a receiver. lock is a measure of
extent of PLL lock. Empirically a threshold of 1

2(1−α)
can be set, above which PLL can be declared to be,
locked.

m← FindBitBoundary({D[n]}∞n=0)
Given the readings {D[n]}∞n=0 from tracking block, the
function output the index of first NAV bit boundary,
after the loops have locked.

m← FindPreamble({NAV[n]}∞n=0)
Given the NAV data bit stream {NAV[n]}∞n=0 the func-
tion output the index of beginning of a preamble, after
checking for parity

L← ParityCheck({A[n]}31
n=0)

Given a 32-bit GPS NAV bit packet {A[n]}31
n=0, the

function performs the parity check. Output L = 1 if
the check is passed else 0

y ← Cap(x, θ) The function caps absolute value of input real x to θ

{C[n]}T−1
n=0 ← CACODE(sv)

For GPS satellite number sv, the function generates
the C/A code and samples it at Fs. The resulting T
length sequence is output to be used in acquisition and
tracking

{pseudoRange[n]}n=K
n=1 ←

Main({s[n]}∞n=0)

For input stream of raw signal samples {s[n]}∞n=0, the
function performs acquisition, tracking and outputs
pseudoranges computed for K detected satellites, at
the preamble beginnings. Note that this assumes that
a satellite signal once acquired, is tracked, & generates
valid NAV bit stream

Table 4.3: Descriptions of functions used in the software implementation

Also note that having the signal in baseband, i.e fIF = 0 will create problems at all places

where we assumed the high frequency component to vanish on Tint integration. However the

above procedure will ensure that this component is sample-wise removed, not relying on the

integration to eliminate it.

48



4.1.2 pseudocode

A summary of all the functions defined can be found in Table 4.3.

Algorithm 4.1.1: CACODE(sv)

{C[n]}T−1
n=0 ← 0

{G1[n]}10
n=1 ← 1

{G2[n]}10
n=1 ← 1

{t1, t2} ← TapPosition(sv)

δ ← 1
Fs

Tc ← 1
1023×1000

k ← 0

C[k] = G1[10]⊕G2[t1]⊕G2[t2]

nc ← 1

while (nc < 1024)

do



k ← k + 1while (kδ < ncTc)

do

{
C[k] = C[k − 1]

k ← k + 1

G1← [(G1[3]⊕G1[10])⇒ G1]

G2← [(G2[2]⊕G2[3]⊕G2[6]⊕G2[8]⊕G2[9]⊕G2[10])⇒ G2]

C[k] = G1[10]⊕G2[t1]⊕G2[t2]

nc ← nc + 1

C ← (2× C − 1)

comment: Element-wise operation to convert array of {0, 1} to {−1, 1}

return (C)

Algorithm 4.1.2: Cap(x, θ)

comment: x is a real number, θ is a positive real number

if (|x| < θ)

then y = x

else y = x
|x| θ

return (y)
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Algorithm 4.1.3: Acquire(P,C)

procedure Acquire(P,C)

vp ← 0

fp ← 0

cp ← 0

f ← fI − fR −∆fbin

while f ≤ (fI + fR)

do



f ← f + ∆fbin

Ilo ←
[

cos
(2πf
Fs
n
)]n=T−1

n=0

Qlo ←
[

sin
(2πf
Fs
n
)]n=T−1

n=0

for m← 0 to 1022

do



Ĉ ← (C � m∆C)

vcorr ←
(
P
⊙
Ilo
⊙
Ĉ
)2

+
(
P
⊙
Qlo

⊙
Ĉ
)2

(1)

if (vcorr > vp)

then


vp ← vcorr

fp ← f

cp ← m∆C

return (vp, fp, cp)

Algorithm 4.1.4: Acquisition({s[n]}∞n=0, sv)

k ← 1

f0 ← 0

c0 ← 0

found← 0

Csv ← CACODE(sv)

while (found = 0) or (k < Nattempt)

do



v, f1, c1 ← Acquire(P Tk (s), Csv)

if (v > Vth) or ((f1 = f0) and (c1 = c0))

then found← 1

f0 ← f1

c0 ← c1

k ← k + 1

return (f0, c0, found× v)

50



Algorithm 4.1.5: Track({s[n]}∞n=0, sv, faq, caq)

cp ← caq

flo ← faq

φlo ← 0

Csv ← CACODE(sv, Fs)

lock← 0

k ← 0

while (1)

do



Ĉ ← (Csv � cp)

Ĉe ← (Ĉ � ∆D)

Ĉl ← (Ĉ � ∆D)

Ilo ←
[

cos
(2πflo

Fs
n+ φlo

)]n=T−1

n=0

Qlo ←
[

sin
(2πflo

Fs
n+ φlo

)]n=T−1

n=0

ip ←
(
P Tk
⊙
Ilo
⊙
Ĉ
)

(1)

qp ←
(
P Tk
⊙
Qlo

⊙
Ĉ
)

(2)

vp ←
(
P Tk
⊙
Ilo
⊙
Ĉe
)2

+
(
P Tk
⊙
Qlo

⊙
Ĉe
)2

(3)

vl ←
(
P Tk
⊙
Ilo
⊙
Ĉl
)2

+
(
P Tk
⊙
Qlo

⊙
Ĉl
)2

(4)

dDLL ← (vl − ve)
dPLL ← Cap(tan−1

( qp
ip

)
, θcap)

cp ← cp +Kc dDLL

φlo ← (φlo + 2πTintflo +K1 dPLL) mod 2π

flo ← flo + K2
2π dPLL

lock← α× lock +
(i2p−q2p)

(i2p+q2p)

D[k]← sign(ip)

Z[k]← cp

k ← k + 1

return ({D[n]}∞n=0, {Z[n]}∞n=0, lock)
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Algorithm 4.1.6: FindBitBoundary({D[n]}∞n=0)

A20 ← [1, 1, . . . , 1]1×20 comment: An array of 20 ones

m← 19

while (|{D}m(m−19)

⊙
A20| < 20) or (D[m+ 1]×D[m] > 0)

do m← m+ 1

return (m+ 1)

Algorithm 4.1.7: FindPreamble({NAV[n]}∞n=0)

found = 0

m← 2

Ppre ← [1,−1,−1,−1, 1,−1, 1, 1]1×8 comment: GPS preamble

while (found = 0)

do



while (|{NAV}m+7
m

⊙
Ppre| < 8)

do m← m+ 1

L = ParityCheck({NAV}m+29
m−2 )

if (L = 1)

then found = 1

return (m)

Algorithm 4.1.8: ParityCheck({A[n]}31
n=0)

comment:A is an array with elements ∈ {+1,−1}

Word(32×1) ← {A[n]}31
n=0

ParityBits(6×1) ← {A[n]}31
n=26

ParityCheck(6×1) ← [(M(6×32) Word(32×1)) mod 4]− 2

comment: Modulo 4 and subtraction by 2 are to be done element-wise on the array

if (ParityBits(6×1) = ParityCheck(6×1))

then L = 1

else L = 0

return (L)
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Algorithm 4.1.9: Main({s[n]}∞n=0)

K ← 0

Faq, Caq, SATaq

for sv← 1 to 37

do


faq, caq, vaq ← Acquisition(s[n], sv)

if vaq > 0

then

{
K ← K + 1

SATaq[K]← sv ; Faq[K]← faq ; Caq[K]← caq

for i← 1 to K

do {Di[n]}∞n=0, {Ci[n]}∞n=0, locki ← Track({s[n]}∞n=0, SATaq[i], Faq[i], Caq[i])

{B[n]}Kn=1 ← 0

for i← 1 to K

do



B[i]← FindBitBoundary({Di[n]}∞n=0)

Tref ← 0

svref ← 0

if (Tref < B[i])

then
{
Tref ← B[i] ; svref ← i

A1×20 ← [1, 1, . . . , 1]

for i← 1 to K

do


m← 0

while (1)

do

{
NAVi[m]← sign({Di[n]}B[i]+20m+19

n=B[i]+20m

⊙
A)

m← m+ 1

Brel ← (Tref −B) mod 20

Brel ← 20−Brel
Brel[svref ]← 0

for i← 1 to K

do
{

PrePos[i]← FindPreamble({NAVi[n]}∞n=0)

PrePosrel ← PrePos− PrePos[svref ]

for i← 1 to K

do


CodePhase[i] = Ci[1 + Tref +Brel[i] + 20× PrePos[i]]

DelayDifference[i] = (PrePosrel[i]× 20× 10−3 + Brel[i]× 10−3 + CodePhase[i]
Fs

) seconds

pseudoRange[i] = (65× 10−3 + DelayDifference[i])× 299792458 meters

return ({pseudoRange[n]}n=K
n=1 )
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4.2 Experimental Setup

Actual data from GPS satellites is recorded and then input into the software receiver, which

processes it offline to obtain the pseudoranges. Recording is done using USRP + GNURadio

setup. The recording is also processed with GNSS-SDR, a GNURadio based open source GNSS

receiver implementation and the results are compared. Described below are each component

used in recording and validation.

GPS active antenna

Usually GPS antennas are patch antennas designed for RHCP (right hand circular polarised)

signal. Since GPS antennas have to be placed in open location for good reception, long wires are

required to carry signal from the antenna to the processing unit. However the GPS signals are

so weak that the cable losses can degrade SNR considerably, beyond processing unit’s ability to

recover it. Thus most GPS antennas come with an in-built Low-Noise Amplifier(LNA), so that

the antenna output (both signal and noise, impartially) is amplified before being transmitted

through the long cable. The LNA is also important to amplify the signal to be greater than the

ADC quantization level. We use a readily available active GPS antenna centered at 1575.42MHz

and requiring a 3.3V to 5V supply. The LNA has +20dB gain and is very wideband. The

antenna must be kept under open sky and avoiding any shadow regions caused by tall structures.

USRP & GNURadio

Universal Software Radio Peripheral (USRP) with DBSRX 2 (Rev. 2) daughter board from

Ettus Research is used as to record the signal from the antenna. DBSRX 2 is used since it has

an onboard bias-tee to power the active antenna. G Following must be noted about using the

USRP and GNURadio

• USRP front-end filters and samples the input at 100 MHz irrespective of the sampling

frequency set by the user. The signal is then digitally filtered according to Nyquist, about

the center frequency, and downsampled to the desired sampling rate Fs. Setting 0 for

bandwidth in GNUradio will make the USRP filter the signal to maximum bandwidth

allowed according to Nyquist criterion, for a given Fs.

• USRP and the setup will have a frequency range in which it operates, typically 50MHz

to 2.2GHz. Thus it can be used for L1 and L5 band recordings, but not for S band. We

sample GPS L1 signals at 1575.42MHz.

• USRP has a stable clock source with very little jitter. The center frequency shifts due to

clock stability is around 100Hz at 1575.42MHz, which is within the lock-in range of PLL.

• Since GPS signal recording involves sampling rate in the upwards of 2MHz, USRP must

have enough buffer size. Else, the samples are dropped which can render the data useless,

since timing of each sample is important for pseudorange computation. Figure 4.1b shows
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(a) GNURadio settings used for recording (b) Result of insufficient buffer length. This data
was recorded on USRP B2100 with Fs = 4MHz

the result of tracking for such a data recording. For this reason, USRP N210 is used. Note

that it requires a PC/laptop with 1 Gb Ethernet port with communicate with USRP N210.

Also, when GNURadio prints either ’D’ or ’0’ on the terminal it indicates a buffer overflow.

(Refer http://gnss-sdr.org/conf/ for a brief description).

• It was observed that the data must be recorded with a USRP gain of atleast 40dB for

the software receiver and GNSS-SDR to work. The setting is to be done in GNURadio as

shown in Figure 4.1a. We keep a gain of 60dB.

• The USRP down-converts the signal to baseband resulting in a complex signal. Both the

inphase and quadrature components are then sampled at Fs. Each complex sample has a

32-bit real and 32-bit imaginary part, which are interleaved and stored into a file.

GNSS-SDR

GNSS-SDR [27] is an open-source implementation of Global Navigation Satellite System receiver

in software, aimed at software-defined radio applications. GNSS-SDR is used to validate the

experimental setup. The recorded file from the above setup is input to the GNSS-SDR program

and it locks to the correct coordinates. GNSS-SDR requires a satellite signal strength of 40dB-

Hz or more to detect and lock on to the satellite. The working of GNSS-SDR and of the

antenna on first use were verified by comparing them with a commercially available complete

GPS receiver. GNSS-SDR provides a observables file after processing the recorded data. It

contains information like the Doppler shift, pseudorange, SNR etc for each of the acquired

satellite. This is used to validate the outputs of the software receiver.

4.3 Results and Validation

The data samples recorded from the setup at Fs = 4MHz were input into the software imple-

mentation. Described below are the results for a 3 minute data recorded on 19th September

2016, at Department of Electrical Engineering, IIT Bombay. Satellite vehicles 8, 10, 14, 18 and

32 were visible at the time of recording as validated using GNSS-SDR.

Figure 4.2 shows the result of Acquisition for each of the visible satellites. Acquisition result

55

http://gnss-sdr.org/conf/


for satellite 2 is also shown to compare the difference in acquisition result with and without

presence of the signal. Note that the signal from satellite 8 is weak and hence the correlation

value doesn’t cross the threshold. However, the peak repeats in the same bin for two successive

attempts, and thus the function declares it as detected. Prominent second and third peaks in

some cases is due to strong correlations at same code-phase but (f̃d + 500) Hz and (f̃d − 500)

Hz frequency bins.

The tracking block is initialized after acquisition. Figure 4.3 shows the local frequency value

as the PLL settles to actual Doppler Frequency. Figure 4.5 shows the output of tracking loop

revealing the navigation bits. Figure 4.6 shows the delays in reception of the preamble. These

delays along with DLL code-phase tracks are computed and used in calculating the relative

pseudoranges. Figure 4.4. Different rates of code phase change is indicative of different Doppler

shifts or the different rates at which the satellite is moving towards (or away incase of satellite

32) the receiver.

Figure 4.7 compares the relative pseudorange of satellites 18 and 10, as calculated by the code

and GNSS-SDR. The pseudoranges are computed every 6 seconds by the code, at the arrival of

preambles. The pseudo-ranges computed by GNSS-SDR are around the same time though not

exactly at the same instance as the code. This may contribute slightly to the error between the

two computations. Moreover, the error is within 300 meters, which implies that the DLL tracks

of the code and GNSS-SDR are within about 1 chip difference from one another. A better DLL

implementation whether the speed of Generation of the code itself is controlled rather than just

the code-phase may yield better result as discussed in 3.2.

Figure 4.8 shows similar sudden changes in the frequency tracked by the PLL for all the satellites.

This is the result of center frequency shifts in the USRP. However the shifts are small and within

the lock-in region of PLL, and thus the lock is not lost. Figure 4.10 and 4.11 demonstrates how

the lock measure used in Track may be used.

False PLL Lock

Refer to Figure 4.12 and 4.13. As discussed in Section 3.2.2, the PLL can not distinguish

between fd and fd + k 1
2Tint

for any integer k. In Figure 4.12, the receiver operates on incoming

samples to acquire data from satellite 32 (19th September 2016 recording). The top row shows

that acquisition gives f̃d = 500 Hz and PLL locks to correct fd ≈ 750 Hz, which is near the

midpoint of 500 Hz and 1000 Hz frequency bins. However if the receiver starts operating a

second later, the noise tips the acquisition value in favor of 1000 Hz, resulting f̃d = 1000 Hz.

The PLL locks, but to fd + 500 Hz. Figure 4.13 shows that the lock measure will not indicate

such false locks. Thus when the receiver observes that PLL has locked but the output sign(I)

are not as expected, it should try initializing the PLL with an offset of ± 1
2Tint

Hz.
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Figure 4.2: Acquisition output. The correlation values of 2D search over frequency and code-
phase is plotted as a 1D array.

NAV bit flips

Refer to Figure 4.14. These are results for SV 16, for a data collected on 6th May 2017. The

satellite signal had low SNR (for the software receiver given here and with Tint = 1ms) of about

40 to 42 dB-Hz, as measured in GNSS-SDR. The lock measure is noisy, indicating the rough

performance of the PLL. This increases the probability of PLL undergoing the 180◦ phase switch

as discussed in Section 3.2.2. One such event is shown in Figure 4.14.

bc
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Figure 4.3: PLL frequency tracking output, beginning with the acquisition output value, over
the next 1 second

Figure 4.4: Code Phase tracked by DLL of each channel relative to their starting value (the
value from acquisition)
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Figure 4.5: Output of the Track procedure settles to show the NAV bits. Preamble can be
found around the same time in all the NAV bit streams (was validated using parity check)

Figure 4.6: Delays between arrival of Preamble from different satellites
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Figure 4.7: The difference between pseudorange of satellite 10 and satellite 18, as computed by
the software implementation and GNSS-SDR are compared. The error for other satellites are
in the same order
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Figure 4.8: Frequency tracked by PLL over 40 seconds for two different satellites shows sudden
shifts in receiver center frequency

Figure 4.9: NAV bit frames from SV 32, 19th September 2016, first 70 bits of each frame are
shown. Verify that the Week Number in decimal is 891 (Check here https://www.labsat.

co.uk/index.php/en/gps-time-calculator). The SF ID and TOW increment by 1 every
subframe.
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Figure 4.10: Measure of PLL lock plotted along with the PLL output. the measure of lock can
be used to decide if the PLL output has settled and can be sampled to obtained NAV bits

Figure 4.11: The lock measure can also be used to detect momentary deviations in the PLL
and thus the sudden frequency shifts

62



Figure 4.12: Acquisition and tracking performed on a recorded data with a separation of 1
second. PLL locks to (fd + 500 Hz due to wrong acquisition

Figure 4.13: Lock measure is only slightly less when PLL locks to (fd + 500 Hz)
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Figure 4.14: Lock measure obtained while processing data from SV 16, 6th May 2017 over 80
seconds. The signal from SV 16 was very noisy, which is reflected in the lock measure. NAV
bit frames, first 70 bits of each frame are shown. Subframe 5 is inverted indicating a PLL flip
somewhere in subframe 4
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Chapter 5

IRNSS Front-end: Hardware

Implementation

(This Chapter is based on the work done along with Arunabh Saxena, Praveen Sriram and Vi-

neet Moghe as their ‘EE344:Electronic Design Lab’ project under the guidance of Prof. Shalabh

Gupta, EE, IITB)

As outlined in 1.1, the main difference between GPS and IRNSS is the frequency band used

for transmission. While the same signal processing programs can be used to decode both IRNSS

and GPS signals with minor distinctions, front-end tuned for different frequencies are required

to capture the signals. This chapter begins by introducing the generic front-end architecture

common to any GNSS receiver. This is followed by the design details of a receiver front-end,

built for S-band (2492.028 MHz) of IRNSS. The signal captured with the said front-end was

recorded using the setup described in previous chapter. The program presented in Chapter 4

was able to acquire and track signals from satellites of IRNSS constellation, simply be replacing

the C/A codes of GPS with that of IRNSS.

5.1 GNSS receiver front-end architecture

Figure 5.1 shows block diagram of a standard receiver, along with Fourier domain visualization

of the signal at each stage of the front-end. Recapping the signal model, raw signal received at
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the antenna 1© is:

sr(t) =
√
P D(t− τ)x(t− τ) cos(2π(fc + fd)t+ θ)︸ ︷︷ ︸

s(t)

+n(t)

where, D(t) = Navigation Data Bits

x(t) = PRN code

τ = Signal Travel Time

fc = Carrier Frequency

fd = Doppler Frequency Shift

n(t) = White Gaussian Noise

The amplified band-pass filtered signal about fc can be represented as 2©,

sr(t) =
√
PrD(t− τ)x(t− τ) cos(2π(fc + fd)t+ θ)

+ nI(t) cos(2πfct)− nQ(t) sin(2πfct)

where, nI(t) + jnQ(t) =Baseband equivalent of the band-pass filtered white noise

As per the ICD [11], maximum signal power received at the antenna (in 20MHz) is -153dbW (i.e

123dBm), and -139dB after first stage amplification of say 14dB . The noise power at antenna

can be found as N = kTEB, where k is the Boltzmann’s constant (1.3806 × 10−23JK−1), TE

kelvin is effective noise temperature ( 513K) and B is the concerned bandwidth ( 20MHz in

this case). Note that the effective noise temperature represents net effect of thermal noise due

to the actual temperature and the noise figure of the amplifier electronics. That gives noise

density of −201.5dBW/Hz and noise power of −201.5 + 73 = −128.5dBW (-114.5dBW after

LNA of 14dB). So SNR that can be expected is −153 + 128.5 = −24.5dB[14]. The signal is

thus buried under the noise floor and will not be visible on a spectrum analyzer.

As the signal sr(t), received at the antenna, flows through the receiver chain, each component

adds its own noise, say ni(t) (the power of which is quantified as ‘noise figure’ specification of the

component). So the signal finally sampled will be s(t) +n(t) +
∑
i
ni(t). Since the desired signal

s(t) is already so weak, any further degradation of SNR in the receiver should be minimized.

To maintain the SNR no worser than at the antenna, amplify the signal from antenna, say by a

factor of A, before any other processing. Then the final signal would be A(s(t)+n(t))+
∑
i
ni(t)

and the SNR, for large A, A2×P
(A2P (n)+

∑
i
P (ni))

≈ P
P (n) = SNR at the antenna (P (ni) are noise

powers). The noise power added (which is inevitable) in the process of amplification itself

should be very low. That is to say that the amplifier should have a very low noise figure. Such

an amplifier is called a Low Noise Amplifier(LNA), with a noise figure of typically less than

1 dB. Noise floor is the thermal noise power plus the noise figure of the component (note that

the addition is in time scale, not dB scale). So it can be said that a LNA amplifies input signal

without raising the noise floor by too much. LNA is the first component after the antenna in
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Figure 5.1: Complete Receiver Block Diagram
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any GNSS receiver. The commercial ‘GPS antennas’ are actually the passive antenna plus an

LNA. They have to be powered, usually with a 3.3V or 5V supply, provided through a bias-tee.

Hence they are referred to as active antennas.

Having ensured considerable immunity to receiver noise, the next step is to down-convert the

signal at a large carrier frequency of fc to a reasonable intermediate frequency fI within the

analog bandwidth of ADC used. The process of down-conversion is carried out in a ‘mixer’,

followed by a low pass filter (LPF). Mixer multiplies the input signal carrier cos(2π(fc+fd)t+θ)

with a locally generated cos(2π(fc − fI)t) and the resulting signal is passed through the LPF

to eliminate the high frequency component. The result is the signal cos(2π(fI + fd)t + θ).

Down-conversion to fI could have been achieved using cos(2π(fc+fI)t) as well. This is referred

to as higher side injection, while the former is known lower side injection. In case of

lower-side injection, frequency fc + f , appears at fI + f in the down-converted signal, but

in higher-side injection, it appears at fI − f , towards the baseband. If the captured signal

has unwanted signals at frequencies lower than the band of interest, then one would choose

higher-side injection. This would put the unwanted signals away from baseband and a LPF

can attenuate them. In practice, a mixer chip includes the signal multiplier, low pass filter and

possibly gain stages as well. The local signal for the mixer is generated by a Local Oscillator

(LO), which generally is a digitally controlled analog PLL chip. Stability of the LO is an

important consideration as discussed in Section 2.3.3 and 3.2.2.

Usually mixers have large noise figures and the input signal should be significantly above the

noise floor of the mixer. As an empirical thumb rule, the input signal power should be about 20

dB more than the noise floor of the mixer. Hence, our captured signal sr(t) must be amplified

by atleast [noise figure of mixer + 20] dB before the mixer. A single LNA stage may not

be able to provide this gain, hence multiple amplifiers, not necessarily of the low-noise kind,

may be needed before the mixer. At this point, note that the noise n(t) will be very wideband

(white-noise-like). Thus passing the amplified LNA output as it is to the subsequent gain stages

may saturate them. This necessitates the use of a band-pass filter (BPF) after the LNA

(since putting it before the LNA would degrade SNR) and before the gain stages. The BPF

should allow fc and a band of atleast 2 × 1
Tc

= 2.046 MHz about it, without much loss. Tc is

the GPS/IRNSS chip time. Besides avoiding saturation, BPF also performs the following two

functions:

• Image frequency reduction: After the mixer down-converts with LO frequency of

(fc − fI), signals at fc and fc − 2fI , both appear at fI . Thus we would need that the

power at fc−2fI , due to noise or otherwise, be attenuated sufficiently before entering the

mixer. The BPF can be so chosen to ensure this.

• Interference elimination: S-band signal of IRNSS is spectrally very near to the 2.4 GHz

WiFi, which is usually very powerful. A BPF with sharp roll-off on the lower frequency

side can be used to reduce the impact of WiFi. If this is not ensured, strong WiFi signal

may saturate the RF chain, in-spite of presence of the BPF.

The BPF will cause an unavoidable loss in the band of interest. It must be included in deciding
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(a) Choosing the pre-sampling bandwidth Bp for
GPS signal. Signal main lobe is 2.046 MHz wide

(b) Probability densities of sample values for differ-
ent Bp and its effect on one-bit sampling.

the required RF chain gain. Also note that a large fI is preferred for image frequency rejection.

Bandwidth of the ADC used however is the upper limit.

After the signal has been amplified, filtered and down-converted, it can now be sampled. Like

with mixer, we need to ensure that the signal is sufficiently higher than the noise floor of the

ADC. Moreover the signal should have sufficient amplitude to occupy the dynamic range of

the ADC. Thus additional gain in the intermediate frequency (IF) stage may be required. The

amount of IF gain required is dictated by the ADC specifications. In GPS signal processing

varying power of the input signal is undesirable since some receiver parameters must be changed

accordingly, as discussed in the previous chapters. Hence the IF stage may be designed to have

an automatic gain control (AGC) ability. The AGC unit may be inbuilt in the mixer

output, or into the ADC input. AGC can also ensures that the entire dynamic range of the

ADC is always used, improving accuracy of the signal samples. AGC however is not required

in case the signal is one-bit sampled, as in some primitive receivers. After IF gain stages, if

any, the signal is filtered to prevent aliasing and sampled. The pre-sampling bandwidth Bp, the

sampling rate Fs and the number of levels of quantization L are important parameters. They

are briefly discussed next.

5.1.1 Sampling Parameters

[17] is a widely cited paper with respect to sampling in GNSS literature. The paper presents

simulated results on the effect of these parameters on the match-filtering process, like acquisition

in our case. Here we discuss intuitions to make good choices for Bp, Fs and L. Following are

some interesting theoretical considerations:

• Firstly, suppose the signal samples are not quantized and we retain the analog values (or

high precision sampling more realistically), then clearly Bp = 2Fs. This is to satisfy the

Nyquist criterion and because oversampling does not give any advantage. The question
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then is: for a wideband, very low SNR signal like GPS, what value of Bp should one

choose? As shown in 5.2a, as the bandwidth is increased, the receiver collects more noise

than signal. Thus SNR falls with Bp. But however match-filtering analysis like in [5] tells

that increasing Bp will improve acquisition peaks, though with diminishing returns. Also,

increasing Bp proportionally increases computational cost since sizes of arrays involved

in acquisition, tracking etc increase. With these trade-offs, Bp to cover 2 to 4 lobes

of the signal seem sufficient. Thus in all our implementations, we take Fs = 4 MHz,

Bp = 8MHz (USRP does it for us). Since the USRP does high precision sampling, the

software implementations were tested under this case. However, it has worked even when

the samples were converted to one-bit and fed to the software receiver.

• Now we need to quantize the samples. Figure 5.3b shows how a strong narrow-band

interference degrades the signal. Usually jammers sweep the entire band with such in-

terference and the receiver needs to appropriately notch-filter them out [20]. So if the

receiver intends to have anti-jamming capabilities, then it needs high precision sampling.

If not then there is not much to gain from higher order sampling of a low SNR signal

like GPS. Receivers usually perform one to four bit quantization. But it is known that

oversampling (more than Nyquist) is helpful in mitigating the quantization loss [21]. So

keeping Bp = 8 MHz, is there any advantage in taking Fs > 4 MHz?

• One-bit sampling works well for GPS and hence is of interest. One-bit quantization

offers a lot of advantages. Like discussed before, one-bit sampling makes many receiver

constants independent of the signal strength, thus eliminating the need for AGC. Thus

from hardware design perspective one-bit sampling is highly attractive. To analyze one-bit

sampling consider,

sign[y(t)] = sign[x(t) + n(t)] = sign[x(t)]

only if, |n(t)| < |x(t)|

This region corresponds to the shaded part in Figure 5.2b. Only samples of y(t) that lie

in this region contain any information about the original signal x(t). For GPS/IRNSS

x(t) is the PRN sequence and hence it contains information only in its sign, So the one-bit

sample in shaded region contains complete information of the signal. The peak height

above the wrong correlations in acquisition will depend on the fraction of area in the

shaded region. With white assumption on noise, 5.2b illustrates how oversampling may

help. Nyquist sampling with one-bit gives the same result, since, on going from Bp to

2Bp the variance of noise samples double, but the number of samples per unit time also

double. Hence fraction of samples in the desired region remain the same. Figure 5.4

shows simulation results which verify advantage of oversampling. Also, analysis results

from previous chapters do not directly extend to low-bit quantization. For instance, one

can see that the carrier phase will matter in acquisition at one-bit sampling.
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(a) Normal GPS signal capture without interference (b) GPS signal capture with interference

Figure 5.4: B is taken to be 2.046MHz. Acquisition for full precision, one-bit at 128MHz fs, at
4MHz fs, at 2MHz fs. Noise σ = 50

• Having decided the quantization order, the optimal spacing between quantization levels

must be computed. Works like [18] suggest use of non-uniform quantizers at low SNRs,

but they add to hardware costs. The sampling can be done at higher precision and then

reduced to enable fast computation in a FPGA. In such cases, quantizers specific to the

signal can be designed, for example [16].

In conclusion, we note that GPS-like sampling involves interesting theoretical questions [22]

[23], which have direct practical implications on the receiver design.
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(a) Nearly Square MSA Schematic (b) Square MSA with modified corners Schematic

5.2 IRNSS S-band Front-End implementation

This section gives details of the S-band receiver designed, implemented and tested based on

discussions in the previous section. The main constituents are, the antenna, the LNA, the SAW

filter, the RF gain blocks, the mixer and the LO.

Antenna

IRNSS signal, like GPS, are RHC polarized, for multiple reasons, including easy multi-path

rejection. Thus the receiver must have an RHCP antenna. A linearly polarized antenna can be

used as well, but it will result in loss of half the power (3dB loss). Listed below are guideline

specifications for a good antenna design of S-band of IRNSS:

• Centre frequency at 2492.028 MHz

• 3 dB Bandwidth of 8 MHz around the center frequency on both sides

• Polarization: Right Handed Circular Polarization

• VSWR lesser than 2 at the center frequency

• Axial Ratio < 3 dB at the center frequency

Generally receivers have patch antennas with some asymmetry to make them circularly polar-

ized. The two Micro-Strip Antenna designs shown in Figure 5.5a and 5.5b were used.

LNA, SAW filter and the RF gain stages

Analog Devices Low Noise Amplifier ADL5523 was chosen, with a noise figure of 0.9 dB and

13.5 dB gain in the frequency range of interest. The Saw filter TA1442A which had a center

frequency near 2.49 GHz and a 10dB Bandwidth of 100 MHz was used. Along with loss due to

SAW filter, the first two components gave a net gain of 9.2 dB. The mixer that was used had

a noise figure of 11 dB. According to the thumb-rule net RF chain gain should be about (20 +
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(a) LNA typical circuit as given in the datasheet (b) Fabricated LNA and SAW Filter board. Antenna
is to be directly connected to this

11)dB. Two LNA devices of the same kind were used in the gain stage. The measured net gain

was 9.2 + 13.2 + 9.2 = 30.68 dB (though 9.2 dB + 13.5 dB + 13.5 dB was expected).

Mixer and LO

Mixer AD8347 was used. The mixer can provide upto 20 dB RF gain and 19.5 dB IF gain.

The gain can be tuned. The maximum measured gain was 38.2 dB and it was used. The net

measured gain of the chain until mixer output was 62 dB (includes losses due to cables and

SMA connectors). AD8347 also provides AGC and base band conversion options. They were

not used in the current receiver design. A Vector Signal Generator VSG25 of Signal Hound was

used to provide -8dBm LO input to the mixer.

Testing

WBX-FE Simple R6.0 daughter-board on N210 USRP along with GNURadio as described in

Chapter 4 was used. Signals were recorded on the terrace of GG building of EE Department,

to have setup directly under the sky and the stay far from WiFi routers. Figure 5.7 shows the

signal output from the receiver chain, near a WiFi router. The recorded signal was fed to the

software receiver implementation, using the IRNSS C/A codes instead of GPS and Tint = 2ms

was used for the acquisition. The results are shown in Figures 5.8a and 5.8b. In some good

recordings upto 6 of the 7 IRNSS satellites have been acquired and tracked.

It was observed that setting the gain given by the mixer and the USRP to 0 dB, still allowed

for a good acquisition. This might be due to high quality ADC used in the USRP, capable of

sensing very low amplitude signals. However, the RF gain is important, and reducing it (by

removing a gain stage) results in loss of detection.

Conclusion

The software implementations of acquisition and tracking blocks have thus been tested for

actual IRNSS signals as well. The chapter described general considerations involved in designing
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Figure 5.7: WiFi Interference seen using Spectrum Analyzer. This is with higher side injection.
Marker locates the frequency to which 2.492028 GHz is down-converted

(a) Acquisition result for IRNSS satellite number 3 (b) Navigation bits from SAT 3, over 50 seconds

the front-end and presented the example of IRNSS S-band receiver front-end implementation.

Possible next steps could be to replace the USRP and complete the front-end till ADC, convert

the acquisition and tracking blocks into real-time engines on a FPGA and integrate it with the

front-end and to add the last layer of software to compute receiver position (or more generally

the PVT- position, velocity, time ) from measured pseudoranges. The entire setup can be used

receive L5 signals as well, which appropriate changes to antenna and the filters. On the other

hand, to complete the software implementation of IRNSS receiver, NAV bit processing functions

like a constitutional decoded need to be written. Finally, the parts can be put together for a

receiver which can effectively use the two bands of IRNSS and the 24×7 visibility of all 7

satellites, to provide accurate positioning and timing services

bc
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